FLÁVIO APARECIDO GONÇALVES

EROSIVIDADE DAS CHUVAS NO ESTADO DO RIO DE JANEIRO

Tese apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós-Graduação em Engenharia Agrícola, para obtenção do título de *Magister Scientiae*.

VIÇOSA MINAS GERAIS – BRASIL 2002

FLÁVIO APARECIDO GONÇALVES

EROSIVIDADE DAS CHUVAS NO ESTADO DO RIO DE JANEIRO

Tese apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós-Graduação em Engenharia Agrícola, para obtenção do título de *Magister Scientiae*.

APROVADA EM: 19 de dezembro de 2002.

Prof. Fernando Falco Pruski (Conselheiro) Prof. Daniel Fonseca de Carvalho (Conselheiro)

Prof. Márcio Mota Ramos

Prof. Antônio Teixeira de Matos

Prof. Demetrius David da Silva (Orientador) A Deus. Aos meus pais José Antônio e Eunice. À minha esposa Cleide. Aos meus irmãos.

AGRADECIMENTO

À Universidade Federal de Viçosa (UFV), por intermédio do Departamento de Engenharia Agrícola, pelos ensinamentos e pela oportunidade de realização do Programa.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), pela bolsa de estudo.

Ao Professor Demetrius David da Silva, pela orientação, pelo apoio, pelo incentivo e pela dedicação e confiança durante a realização deste trabalho.

Ao Professor Fernando Falco Pruski, pelas valiosas sugestões, pela convivência, pela amizade e pelo companheirismo.

Ao Professor Daniel Fonseca de Carvalho, da Universidade Federal Rural do Rio de Janeiro (UFRRJ), pela amizade, pelas valiosas sugestões e por ter depositado total confiança em mim para a realização desta pesquisa.

Ao Wellington Lima dos Santos, pelo sistema para digitalização de pluviogramas (HidroGraph 1.02).

Ao meu colega Vicente, pela ajuda na aquisição dos dados pluviométricos.

Ao estudante de Agronomia da UFRRJ Eleandro, pelo apoio e pela dedicação durante a digitalização dos pluviogramas.

Aos meus colegas e amigos de Curso, em especial os do Grupo de Pesquisa em Recursos Hídricos (GPRH), com os quais compartilhei as dificuldades e alegrias durante o curso, pelo companheirismo.

À Agência Nacional de Águas/Agência Nacional de Energia Elétrica (ANA/ANEEL) à Light Serviços de Eletricidade S/A (Light) e à Superintendência Estadual de Rios e Lagoas (SERLA), pelo fornecimento dos dados pluviográficos.

Ao coordenador de Hidrologia da SERLA André Pinhel Soares, pela atenção e pela disponibilidade dos dados pluviográficos.

BIOGRAFIA

FLÁVIO APARECIDO GONÇALVES, filho de José Antônio Afonso Gonçalves e Eunice Ferreira Gonçalves, nasceu em Campinas, São Paulo, em 7 de novembro de 1976.

Cursou o segundo grau na Escola Estadual Dr. Raimundo Alves Torres, em Viçosa, MG, concluído em 1994.

Em março de 1995, ingressou no Curso de Engenharia Agrícola da Universidade Federal de Viçosa (UFV), em Viçosa, MG, concluindo-o em março de 2001.

Em abril de 2001, iniciou o Programa de Pós-Graduação, em nível de Mestrado, em Engenharia Agrícola da UFV, área de concentração em Irrigação e Drenagem, submetendo-se à defesa de tese em dezembro de 2002.

CONTEÚDO

Página

RESUMO	viii			
ABSTRACT	X			
1. INTRODUÇÃO	1			
2. REVISÃO DE LITERATURA	4			
2.1. Modelos para a predição das perdas de solo	4			
2.1.1. Equação Universal de Perdas de Solo (USLE)	4			
2.1.2. Equação Universal de Perdas de Solo Modificada (MUSLE)				
2.1.3. Equação Universal de Perdas de Solo Revisada (RUSLE)	7			
2.1.4. Areal Nonpoint Source Watershed Environment Response	7			
Simulation (ANSWERS)				
2.1.5. Water Erosion Prediction Project (WEPP)	8			
2.2. O fator erosividade da chuva	8			
2.3. Índice de erosividade EI ₃₀	9			
2.4. Índice de erosividade KE>25	13			
2.5. Estimativa dos índices de erosividade a partir de dados				
pluviométricos	14			
2.6. Mapas de isoerosividades	16			

Página

3. MATERIAL E MÉTODOS	18				
3.1. Base de dados de precipitação	18				
3.2. Critérios utilizados para a identificação de chuvas erosivas					
3.3. Determinação da energia cinética	21				
3.4. Determinação do índice de erosividade EI ₃₀	23				
3.5. Determinação do índice de erosividade KE>25	24				
3.6. Determinação da erosividade da chuva (fator R da USLE)	25				
3.7. Estimativa dos índices de erosividade mensais médios a partir de					
dados pluviométricos	25				
3.8. Mapas de isoerosividade	26				
4. RESULTADOS E DISCUSSÃO	29				
4.1. Índice de erosividade EI ₃₀	29				
4.2. Índice de erosividade KE>25	45				
4.3. Índices de erosividade anuais médios	46				
4.4. Estimativa dos índices de erosividades mensais médios a partir de					
dados pluviométricos	66				
4.5. Distribuição percentual mensal dos índices de erosividade,					
precipitação e coeficiente de chuva	69				
4.6. Mapas de isoerosividade	79				
5. RESUMO E CONCLUSÕES	83				
REFERÊNCIAS BIBLIOGRÁFICAS	86				
APÊNDICES	92				
APÊNDICE A	93				
APÊNDICE B	107				

RESUMO

GONÇALVES, Flávio Aparecido, M.S., Universidade Federal de Viçosa, dezembro de 2002. **Erosividade das chuvas no Estado do Rio de Janeiro.** Orientador: Demetrius David da Silva. Conselheiros: Fernando Falco Pruski e Daniel Fonseca de Carvalho.

No presente trabalho foram analisadas as séries históricas de precipitação de 14 estações pluviográficas localizadas no Estado do Rio de Janeiro, com o objetivo: de estimar os índices de erosividade das chuvas EI_{30} e KE>25, utilizando-se duas metodologias para a estimativa da energia cinética (FOSTER et al., 1981; e WAGNER e MASSAMBANI, 1988) daquelas 14 localidades, com disponibilidade de dados pluviográficos; e os índices de erosividade mensais médios das referidas localidades, com base em dados pluviométricos, bem como obter os mapas de isoerosividade daquele Estado. O índice EI_{30} foi obtido pelo produto da energia cinética da chuva por sua intensidade máxima em 30 minutos, enquanto o índice de erosividade KE>25 foi determinado a partir da soma dos valores de energia cinética das chuvas que possuíam intensidades, no intervalo de 10 minutos, iguais ou superiores a 25 mm h⁻¹. As médias anuais do EI_{30} nas diferentes localidades variaram de 4.268 a 16.225 MJ mm ha⁻¹ h⁻¹ ano⁻¹, usando-se a metodologia de WAGNER e MASSAMBANI (1988), e de 4.118 a

15.806 MJ mm ha⁻¹ h⁻¹ ano⁻¹, com a metodologia de FOSTER et al. (1981). Para o KE>25, os valores variaram de 42 a 170 MJ ha⁻¹ mm⁻¹, utilizando-se a metodologia de WAGNER e MASSAMBANI (1988), e de 42 a 172 MJ ha⁻¹ mm⁻¹, com base em FOSTER et al. (1981). A estimativa dos índices de erosividade mensais médios a partir de dados pluviométricos foi feita por meio de correlações dos índices de erosividade obtidos a partir da base de dados pluviográficos com a precipitação mensal média (p) ou com o coeficiente de chuva (Rc), ressaltando-se que as equações ajustadas apresentaram coeficientes de determinação (R^2) variando de 0,61 a 0,99, à exceção da Estação Capela Mayrink, cujo coeficiente foi em torno de 0,40. Empregando-se o software ArcView GIS 3.2a, foram gerados mapas de isoerosividade com classes de 1.000 MJ mm ha⁻¹ h⁻¹ ano⁻¹ para o índice de erosividade EI_{30} e de 10 MJ ha⁻¹ mm⁻¹ para o índice KE>25. Para o EI₃₀ foram encontradas 12 classes de erosividade, variando de 4.000 a 16.000 MJ mm ha⁻¹ h⁻¹ ano⁻¹, enguanto para o KE>25 se obtiveram 14 classes de erosividade oscilando entre 40 e 180 MJ ha⁻¹ mm⁻¹. A análise dos dados possibilitou que se concluísse que os índices de erosividades das chuvas apresentam, nos diversos locais estudados, diferenças expressivas entre si. Concluiu-se, também, que: não houve divergências expressivas entre os resultados obtidos pelas equações propostas por FOSTER et al. (1981) e WAGNER e MASSAMBANI (1988) para o cálculo de energia cinética da chuva; que a estimativa da erosividade das chuvas a partir da precipitação mensal média proporcionou melhores resultados do que quando se usou o coeficiente de chuva (Rc); que o semestre com maiores potenciais erosivos no Estado do Rio de Janeiro foi novembro-abril; e que o número anual médio de chuvas erosivas nas localidades analisadas foi de 45, correspondendo a 34% do número total de eventos.

ABSTRACT

GONÇALVES, Flávio Aparecido, M. S., Universidade Federal de Viçosa, December, 2002. **Rain erosivity in the State of Rio de Janeiro, Brazil**. Adviser: Demetrius David da Silva. Committee members: Fernando Falco Pruski and Daniel Fonseca de Carvalho.

Historical rainfall series of 14 rain gauge stations in the State of Rio de Janeiro were analyzed with the following objectives: to establish estimates of the rain erosivity index EI_{30} and KE>25 with two methodologies of estimation of kinetic energy (FOSTER et al., 1981; and WAGNER and MASSAMBANI, 1988) using the available rainfall data of the 14 stations; estimate the mean monthly erosivity indices of the mentioned sites, based on the rainfall data; and obtain isoerosivity maps of the State. Index EI_{30} was obtained by the product of the maximum kinetic rain energy in 30 minutes, while the KE>25 erosivity index was determined based on the sum of values of the kinetic rain energy with an intensity of 25 mm h⁻¹ or higher during 10 minutes. Annual means of the sites obtained by the WAGNER and MASSAMBANI (1988) methodology varied from 4,268 to 16,225 MJ mm ha⁻¹ h⁻¹ year⁻¹, and from 4,118 to 15,806 MJ mm ha⁻¹ h⁻¹ year⁻¹ by the methodology of FOSTER et al. (1981). The KE> 25 values varied from 42 to 170 MJ ha⁻¹ mm⁻¹ with the WAGNER and MASSAMBANI

(1988) methodology, and from 42 to 172 MJ ha⁻¹ mm⁻¹ based on the methodology of FOSTER et al. (1981). The estimate of the mean monthly erosivity indices based on the rainfall data was obtained by correlations of the erosivity indices based on the rainfall data and the mean monthly precipitation (p) or the rain coefficient (Rc). The adjusted equations presented determination coefficients (R^2) between 0.61 and 0.99, except for the coefficient of the station Capeia Mayrink, which lay around 0.40. Isoerosivity maps were created with the help of Arc View GIS 3.2a software with classes of 1.000 MJ mm $ha^{-1} h^{-1} vear^{-1}$ for the erosivity index EI_{30} and of 10 MJ ha⁻¹ mm⁻¹ for the index KE>25. Twelve erosivity classes were established for the EI₃₀, varying from 4,000 to 16,000 MJ mm $ha^{-1} h^{-1}$ vear⁻¹, and fourteen for KE>25, varying from 40 to 180 MJ ha^{-1} mm⁻¹. The data analysis allowed the conclusion that the rain erosivity indices at the different sites presented significant differences among each other. Moreover, the following conclusions were drawn: between the results obtained by the equations proposed by FOSTER et al. (1981) and by WAGNER and MASSAMBANI (1988), there were no significant differences in the calculation of the kinetic rain energy; the rain erosivity estimate based on the mean monthly precipitation provided better results than the use of the rain coefficient (Rc); the half-year with the highest erosive potential was November to April; and the mean annual number of erosive rainfall at the analyzed sites was 45, which makes up 34% of the total rainfalls.

1. INTRODUÇÃO

A degradação dos solos afeta tanto as terras agrícolas quanto as áreas com vegetação natural e pode ser considerada um dos mais importantes problemas ambientais. No Brasil, essa degradação está intimamente associada à intensidade da chuva, à infiltração da água no solo, ao escoamento superficial, à declividade da superfície, à cobertura do solo, à percentagem de cobertura do solo e ao avanço da agricultura. Ela ocorre em virtude da combinação de um rápido desenvolvimento em algumas regiões e da associação de solos frágeis e de um regime climático caracterizado por chuvas torrenciais.

Um dos fatores que mais têm contribuído para a diminuição da produtividade dos solos é a erosão hídrica, facilitada e acelerada pelo homem com suas práticas inadequadas de cultivo. Tais práticas acarretam a exposição do solo aos agentes erosivos, visto que promovem mobilização e cobertura vegetal diferenciadas, ocasionando vários níveis de proteção contra as perdas de água e de solo. A erosão hídrica envolve os processos de desprendimento, transporte e deposição das partículas do solo pela ação das gotas de chuva e do escoamento superficial.

A necessidade de obter uma metodologia capaz de avaliar os fatores que causam a erosão hídrica e a de estimar as perdas de solo resultaram no desenvolvimento da Equação Universal de Perdas de Solo (USLE), que permite a

previsão dessas perdas e a identificação dos fatores que exercem o maior efeito sobre elas. Entre os componentes da USLE, o que expressa a capacidade erosiva da chuva é conhecido como erosividade das chuvas e caracterizado como fator R (WISCHMEIER e SMITH, 1958).

O fator R tem sido considerado um dos mais importantes componentes da USLE não só por sua capacidade em quantificar o efeito do impacto das gotas de chuva sobre o solo, mas por ser utilizado no cálculo da erodibilidade do solo, expresso, numericamente, pela relação entre a perda anual média de solo e o fator erosividade da chuva, bem como dos fatores uso e manejo, que constituem a relação das perdas de um solo cultivado e desse mesmo solo mantido constantemente sem cobertura.

Existem vários parâmetros que podem ser utilizados para estimar a erosividade da chuva. O problema é escolher qual o mais adequado, uma vez que cada ambiente e evento são únicos nas escalas temporal e espacial e, conseqüentemente, a erosão varia de diferentes maneiras. Nas regiões de clima temperado, a variável que tem fornecido melhores resultados para avaliar a erosividade da chuva é o produto da sua energia cinética (EC) por sua intensidade máxima em 30 minutos (I₃₀), sendo expressa como EI₃₀, porém alguns autores (HUDSON, 1973; LAL, 1988) verificaram que o EI₃₀ não apresenta boa correlação com as perdas de solo em regiões tropicais, propondo uma metodologia alternativa para essas regiões chamada de KE>25, que é a soma da energia cinética das chuvas com intensidade superior a 25 mm h⁻¹.

Na determinação dos índices de erosividade EI_{30} e KE>25, é fundamental a existência de uma série histórica de dados pluviográficos. Quando em determinada região esses dados são escassos, a estimativa do índice de erosividade pode ser realizada com base em dados pluviométricos, que são mais fáceis de serem obtidos do que os dados pluviográficos.

Em várias regiões do Brasil, os índices de erosividade vêm sendo utilizados no traçado de mapas com linhas ditas isoerosivas. A obtenção dessas linhas é uma maneira de contornar a escassez de dados que possibilitem a determinação dos índices de erosividade em localidades que carecem de tais informações. Esses estudos, entretanto, ainda não haviam sido realizados para o Estado do Rio de Janeiro, que possui extensas áreas com potencial agrícola, localizadas, muitas vezes, em regiões com topografia acidentada e altos índices pluviométricos.

Sabendo do significado que a erosividade da chuva possui no processo erosivo, objetivou-se, neste trabalho, estimar os índices de erosividade das chuvas EI₃₀ e KE>25 utilizando duas metodologias para a estimativa da energia cinética das 14 localidades do Estado do Rio de Janeiro, com disponibilidade de dados pluviográficos; e os índices de erosividade médios mensais nas referidas localidades, com base em dados pluviométricos, bem como obter os mapas de isoerosividade para o referido Estado.

2. REVISÃO DE LITERATURA

2.1. Modelos para a predição das perdas de solo

A descrição físico-matemática do processo erosivo evoluiu muito a partir da década de 50, com o surgimento da Equação Universal de Perdas de Solo (USLE). Na época, a grande limitação de processos que permitissem a solução de equações matemáticas induzia a utilização de procedimentos fundamentados em bases empíricas, como é o caso da USLE. Entretanto, nas últimas décadas, o avanço da informática permitiu o desenvolvimento de procedimentos baseados em técnicas de simulação que possibilitam considerar as variações espaciais e temporais existentes nos fatores condicionadores do processo erosivo (SILVA e PRUSKI, 1997).

Na seqüência, alguns dos modelos existentes para a estimativa da erosão hídrica e dos processos a ela associados são abordados.

2.1.1. Equação Universal de Perdas de Solo (USLE)

A USLE, da forma como atualmente tem sido utilizada, foi desenvolvida a partir de 1953, quando a Divisão de Pesquisa em Conservação de Solo e Água do Serviço de Pesquisa Agrícola dos Estados Unidos reuniu, na Universidade Purdue, dados de escoamento superficial e de perdas de solo de 10.000 parcelas de 48 estações experimentais norte-americanas. Com base nesses dados, foram incluídas inovações importantes nessa equação, melhorando a precisão da estimativa das perdas de solo. Essas inovações foram a inclusão de um índice de erosividade da chuva, de um fator para a consideração dos efeitos do manejo da cultura, de um fator para quantificar a erodibilidade do solo e de um fator para levar em consideração os efeitos das interações de variáveis como produtividade, seqüência de culturas e manejo dos resíduos culturais. As inovações introduzidas possibilitaram que as dificuldades em considerar fatores de naturezas climática ou geográfica existentes nas primeiras equações fossem superadas, permitindo a sua aplicação em qualquer lugar onde os dados para seu cálculo pudessem ser obtidos, sendo por isso chamadas de Equação Universal de Perdas de Solo (WISCHMEIER e SMITH, 1978).

A partir da consolidação nas condições dos Estados Unidos, a USLE passou a ser empregada largamente no planejamento conservacionista, tanto em seu país de origem quanto em muitas outras nações.

De acordo com LEPRUN (1981), a finalidade principal da Equação Universal de Perdas de Solo é orientar a escolha da melhor técnica de conservação do solo e da água para determinadas condições específicas. Entre os fatores da USLE, o fator R tem sido considerado um dos mais importantes não só por sua capacidade em medir os efeitos do impacto das gotas de chuva, mas também por ser utilizado nos cálculos dos fatores K e C.

Uma das principais limitações da USLE é que ela não prevê a deposição de partículas de solo. Assim, a produção de sedimentos de uma encosta é dada pela perda de solo (erosão específica), calculada utilizando-se a USLE menos a deposição que ocorre em depressões situadas na base das encostas. Para obter a estimativa de produção de sedimentos de encostas complexas ou de bacias hidrográficas, é necessário recorrer a diferentes métodos. Um destes consiste na aplicação de um coeficiente de produção de sedimentos à perda de solo calculada empregando-se a USLE, de modo a obter a efetiva produção de sedimentos (WILLIAMS e BERNDT, 1972).

A USLE é constituída pelos principais fatores que causam a erosão hídrica, ressaltando-se que o produto de todos os fatores resultará na estimativa das perdas médias de solo, em t $ha^{-1}ano^{-1}$. Essa equação pode ser expressa matematicamente, da seguinte forma:

$$A = R K L S C P \tag{1}$$

em que:

- A = perda anual média de solo, t ha⁻¹ ano⁻¹;
- R = fator erosividade da chuva, expresso por um índice numérico que estima a capacidade da chuva de provocar erosão, MJ mm ha⁻¹ h⁻¹ ano⁻¹;
- K = fator erodibilidade do solo, representando a suscetibilidade do solo à erosão, expresso numericamente pela relação entre a perda anual média de solo e o fator erosividade da chuva de uma parcela-padrão com 9% de declividade e 25 m de comprimento, mantida continuamente sem cobertura vegetal e cultivada morro abaixo, de forma a manter a superfície do solo livre de crostas, em t ha h ha⁻¹ MJ⁻¹ mm⁻¹;
- L = fator comprimento do declive, que é a relação de perdas de solo entre uma encosta com certo comprimento e a padrão com 25 m, sendo as demais condições iguais;
- S = fator grau de declive, que é a relação de perdas de solo entre uma encosta com certo declive e a padrão com 9%, sendo as demais condições iguais;
- C = fatores uso e manejo, que são a relação de perdas de solo entre um solo cultivado com determinada cultura e esse mesmo solo mantido constantemente sem cobertura, isto é, nas mesmas condições do fator K; e
- P = fator prática conservacionista, que é a relação de perdas de solo entre um solo com determinada prática de controle da erosão e um solo sem prática conservacionista.

2.1.2. Equação Universal de Perdas de Solo Modificada (MUSLE)

Proposta por Williams, em 1975, a modificação da USLE torna-se aplicável a eventos isolados, sendo a perda de solo obtida com base no escoamento superficial. Para obter o volume escoado superficialmente e a vazão de pico, é recomendável a aplicação das metodologias do número da curva e do hidrograma unitário triangular, desenvolvidas pelo Serviço de Conservação de Solos dos Estados Unidos (SCS – USDA) (SILVA e PRUSKI, 1997).

A MUSLE exibe um maior aperfeiçoamento no cálculo do fator hidrológico, permanecendo os outros parâmetros idênticos aos da USLE.

2.1.3. Equação Universal de Perdas de Solo Revisada (RUSLE)

Com o decorrer do tempo, diversas pesquisas têm ampliado o conhecimento dos processos que influem nas perdas de solo pela erosão hídrica e, conseqüentemente, na modelagem desse processo. Em 1987, o Serviço de Conservação de Solo do Departamento de Agricultura dos Estados Unidos, conjuntamente com o Serviço de Pesquisa na Agricultura e com outros organismos, começou a revisar a USLE. O resultado ficou conhecido como Equação Universal de Perdas de Solo Revisada (RUSLE), a qual, entre outras modificações, incorpora o conceito de vários valores do fator K ao longo do ano agrícola, um novo método para o cálculo do fator C e outro para o cômputo do fator P (RENARD et al., 1991). Segundo RENARD et al. (1994), a RUSLE tem melhor comportamento que a USLE em solos que são cultivados aplicando-se técnicas de preparo conservacionistas, como o plantio direto.

2.1.4. Areal Nonpoint Source Watershed Environment Response Simulation (ANSWERS)

O modelo ANSWERS foi desenvolvido por BEASLEY et al. (1980), visando fornecer embasamento à análise dos efeitos que o uso e o manejo de áreas agrícolas e as práticas conservacionistas têm sobre o comportamento hidrológico e, conseqüentemente, sobre a qualidade e quantidade de água disponível em uma bacia hidrográfica. É constituído por um modelo hidrológico, um modelo de transporte de sedimentos e componentes para modelar as várias fases do movimento de água no solo. Esse modelo permite a discretização das variáveis de entrada e saída, quer no tempo, quer no espaço, podendo ser, assim, aplicado em eventos isolados. Portanto, ele permite considerar a variabilidade espacial dos parâmetros característicos da bacia na análise dos processos erosivos e hidrológicos que ocorrem em determinado tempo e em cada subárea da bacia (SILVA e PRUSKI, 1997).

2.1.5. Water Erosion Prediction Project (WEPP)

O WEPP foi desenvolvido pelo Departamento de Agricultura dos Estados Unidos, com o objetivo de elaborar uma tecnologia para o planejamento ambiental e a conservação da água e do solo, a fim de permitir a predição dos impactos do uso do solo, resultante de práticas de manejo de terras para produção agrícola, pastagens e áreas florestais.

O modelo incluiu os processos de desprendimento, transporte e deposição das partículas de solo. Baseado nas teorias fundamentais de Infiltração, Hidrologia, Hidráulica, Física do Solo, Mecânica de Erosão e Fitotecnia, o WEPP possibilita a estimativa das distribuições espacial e temporal da perda de solo em cada posição da encosta (SILVA e PRUSKI, 1997).

2.2. O fator erosividade da chuva

A Organização de Agricultura e Alimentos das Nações Unidas (FAO) (1967) considera a erosividade da chuva um índice numérico que expressa a capacidade da chuva, esperada em dada localidade, de causar erosão em uma área sem proteção. CABEDA (1976) considera como chuva erosiva aquela que ocorre com quantidade igual ou superior a 10 mm ou que, no mínimo, seja igual a 6 mm em um período de 15 minutos.

Entre os fatores da USLE, apenas o fator R é calculado diretamente, a partir de registros pluviográficos, enquanto os demais são relativos à parcelapadrão. Para obter um valor confiável para o fator R, estima-se que sejam necessários de 10 a 20 anos de coleta de dados (WISCHMEIER e SMITH, 1978).

A variação do fator R ao longo do ano define a melhor época para o estabelecimento das práticas de manejo e conservação do solo (VAL et al., 1986). Além de seu papel como componente da USLE, esse fator pode servir ainda como parâmetro de suporte a trabalhos de extensão e assistência rural (BERTOL, 1994), pois permite definir épocas críticas quanto à ocorrência da erosão. Segundo ROQUE et al. (2001), pesquisas têm indicado que, quando todos os fatores da USLE, com exceção da erosividade, são mantidos constantes, as perdas de solo causadas por uma chuva qualquer são diretamente proporcionais ao índice de erosividade.

2.3. Índice de erosividade EI₃₀

WISCHMEIER e SMITH (1958), pesquisando a relação entre as diferentes características físicas da chuva e as perdas de solo evidenciadas nos Estados Unidos, com o objetivo de estabelecer um índice de erosividade que melhor estimasse a capacidade da chuva em provocar erosão, verificaram que a perda de solo provocada pelas chuvas em áreas cultivadas apresentou elevada correlação com o produto entre duas características das chuvas: energia cinética total e intensidade máxima em 30 minutos. Esse produto foi denominado índice EI₃₀, que foi capaz de explicar de 72 a 97% das perdas de solo causadas pelas chuvas.

De acordo com WISCHMEIER e SMITH (1978), o produto da energia cinética da chuva, por sua intensidade máxima em 30 minutos, representa os efeitos do impacto das gotas e turbulências combinados com a capacidade de transporte do escoamento superficial.

LOMBARDI NETO (1977), tomando como base o registro de chuvas de Campinas, SP, correspondente a um período de 22 anos, calculou o índice de erosividade EI_{30} , obtendo um valor médio anual de 6.769 MJ mm ha⁻¹ h⁻¹ ano⁻¹. Aquele autor verificou que apenas 74% da precipitação anual média foi incluída no cálculo do índice de erosividade EI_{30} , concluindo que 90,7% do índice de erosividade esteve associado ao período de outubro a março, com a ressalva de que, nesse período, a quantidade anual de chuva correspondente foi de 80,1%.

PEREIRA (1977), avaliando a erosividade das chuvas em diferentes localidades do Estado de Minas Gerais, concluiu que aquelas com maior duração e, ou, quantidade precipitada não são, necessariamente, as que apresentam maior índice de erosividade potencial. De modo geral, os maiores valores do índice de erosividade EI_{30} ocorreram, principalmente, em dezembro e janeiro; entretanto, houve uma concentração das unidades do índice no período de outubro a março, representando mais de 90% do potencial anual.

DEDECEK (1978), utilizando dados correspondentes a oito anos de registro de chuvas em Brasília (DF), calculou o índice de erosividade EI_{30} médio anual e obteve um valor de 8.319 MJ mm ha⁻¹ h⁻¹ ano⁻¹. Constatou também que os meses de maior potencial erosivo corresponderam ao período entre outubro e janeiro.

COGO et al. (1978) calcularam o índice de erosividade EI_{30} para alguns municípios do Rio Grande do Sul, obtendo valores médios anuais de 6.275, 8.606 e 7.695 MJ mm ha⁻¹ h⁻¹ ano⁻¹ em Guaíba, Ijuí e Passo Fundo, respectivamente. Eles constataram que as maiores concentrações de percentagem acumulada do índice de erosividade médio anual ocorreram nos meses de dezembro, fevereiro e junho em Guaíba, dezembro e fevereiro em Ijuí e dezembro, fevereiro e março em Passo Fundo.

BISCAIA et al. (1981), correlacionando o índice EI_{30} com dados de perdas de solo das regiões de Londrina (Latossolo Roxo distrófico) e Ponta Grossa (Latossolo Vermelho álico), no Estado do Paraná, obtiveram coeficientes de correlação de 0,72 e 0,77, respectivamente.

FOSTER et al. (1982) correlacionaram 21 características da chuva com as perdas de solo em 10 locais dos Estados Unidos e um local do Brasil. Esses autores obtiveram dados que possibilitaram as seguintes conclusões: a combinação do volume precipitado, volume de escoamento superficial e intensidade da chuva em um único índice estimou melhor as perdas de solo do que o índice EI_{30} . Entretanto, eles ressaltaram que o índice de erosividade EI_{30} é um bom estimador das perdas de solo e que os índices de erosividade que incluíram volume precipitado, intensidade e escoamento superficial, apesar de apresentarem uma melhor correlação, não exibiram uma melhora na predição de perdas de solo que pudesse ser considerada significativa.

PEREIRA (1983) calculou o valor médio anual para o índice EI_{30} a partir de 20 anos de registros pluviográficos em Piracicaba (SP), obtendo um valor de 5.730 MJ mm ha⁻¹ h⁻¹ ano⁻¹. Utilizando 10 anos de dados pluviográficos, CAMPOS FILHO et al. (1984) obtiveram para Glória de Goitá (PE) o índice de erosividade EI_{30} médio anual de 3.484 MJ mm ha⁻¹ h⁻¹ ano⁻¹. LAGO (1984), tomando 25 anos de dados pluviográficos de Pelotas (RS), calculou o seu índice de erosividade médio anual, obtendo um valor de 3.924 MJ mm ha⁻¹ h⁻¹ ano⁻¹.

OLIVEIRA JÚNIOR e MEDINA (1990), ao determinarem a erosividade das chuvas de Manaus (AM), obtiveram índice de erosividade médio anual (EI₃₀) de 14.129 MJ mm ha⁻¹ h⁻¹ ano⁻¹, sendo o período novembro-maio responsável por 79% do EI₃₀ total anual.

SALAKO et al. (1995) chegaram a um valor de índice de erosividade de 18.510 MJ mm $ha^{-1} h^{-1} ano^{-1}$ para a região Centro-Sul da Nigéria. Os estudos indicaram que chuvas de diferentes magnitudes são capazes de causar erosão nos solos locais devido à sua intensidade e ao grande diâmetro das gotas.

ROQUE et al. (2001), estudando 874 chuvas individuais erosivas de uma série contínua de 23 anos de registros de dados pluviográficos de Piraju (SP), obtiveram um índice de erosividade EI_{30} médio anual de 7.074 MJ mm ha⁻¹ h⁻¹ ano⁻¹. Os referidos autores observaram uma concentração de 78,5% do total da erosividade anual média durante o semestre de outubro a março, indicando que, nesse período, era esperada a maior parte das perdas por erosão.

CARVALHO e HERNANI (2001) estudaram as correlações entre os parâmetros de erosividade e as perdas de solo ocorridas de 24/06/1989 a

22/10/1994, num Latossolo Roxo da Unidade de Execução de Pesquisa de Âmbito Estadual (UEPAE) de Dourados (MS). Parâmetros de erosividade da chuva, do escoamento superficial e da chuva-escoamento superficial foram analisados por meio de regressões linear simples, linear múltipla e não-linear, sendo um dos objetivos definir um parâmetro de erosividade para chuvas individuais, visando aprimorar o uso da Equação Universal de Perdas de Solo. Esses autores concluíram que o modelo com a altura do escoamento superficial na forma não-linear foi o que melhor correlacionou com a capacidade erosiva das chuvas individuais, superando todos os demais modelos, simples ou compostos, da chuva ou da chuva-escoamento superficial. De acordo com esses autores, surpreendentemente, neste trabalho o parâmetro EI₃₀ apresentou baixa correlação com as perdas de solo.

MORAIS et al. (1988), trabalhando com parcelas experimentais sem cobertura vegetal em três localidades do Estado do Rio Grande do Sul, correlacionaram os dados de perdas de solo com algumas características físicas das chuvas. Verificaram que a energia cinética foi o parâmetro mais bem correlacionado com as perdas de solo em todos os locais, seguida da quantidade de chuva e de parâmetros que consideram combinações como energia-quantidade e energia-intensidade média. A duração e a intensidade média apresentaram sempre a menor associação com o potencial erosivo.

ALBUQUERQUE et al. (1994), visando estabelecer um índice que melhor expressasse a capacidade potencial das chuvas de Caruaru (PE) em causar erosão, estudaram correlações lineares simples entre 19 características das chuvas e as perdas de solo provocadas por chuvas erosivas num Regossolo Eutrófico. Entre as características estudadas, o produto da precipitação total pela intensidade máxima em 60 minutos (PI_{60}) foi a que melhor se correlacionou com as perdas de solo; entretanto, como salientaram esses autores, foi constatado que não houve diferença estatística significativa entre as características PI_{60} e EI_{30} , tendo sido concluído que o índice de erosividade EI_{30} , comumente utilizado no Brasil, pode ser indicado para estimar as perdas de solo de Caruaru. Os índices de erosividade da chuva, as perdas de solo e o fator erodibilidade do solo foram estudados por MARQUES et al. (1997) em dois solos de Cerrado brasileiro. Os objetivos deste trabalho foram testar a adequação de diferentes índices de erosividade das chuvas, comparar duas equações propostas para cálculo da energia cinética das chuvas (FOSTER et al., 1981; WAGNER e MASSAMBANI, 1988) e estimar o fator K (erodibilidade) da Equação Universal de Perdas de Solo para um Latossolo Vermelho-Escuro (LE) álico muito argiloso e um Podzólico Vermelho-Amarelo (PV) álico muito argiloso da região de Sete Lagoas (MG). Os referidos autores constataram que não houve diferença significativa entre as duas equações testadas para o cálculo da energia cinética das chuvas e que o índice EI₃₀ se mostrou um bom estimador da erosividade da chuva, podendo continuar sendo utilizado como o fator de erosividade da chuva da USLE para a região estudada.

2.4. Índice de erosividade KE>25

HUDSON (1973), estudando a erosividade da chuva na África, verificou que o índice EI_{30} não se apresentava tão eficiente como nos Estados Unidos. Partindo da observação de que para baixas intensidades a erosão do solo era inexpressiva, esse autor desenvolveu um método alternativo para calcular o índice de erosividade da chuva. O valor limite de intensidade, no qual a chuva inicia o processo erosivo, foi considerado como 25 mm h⁻¹. Observou-se uma excelente correlação entre a erosão e a energia cinética da chuva, quando foram omitidas as energias das chuvas ou dos segmentos de chuva que apresentassem intensidades menores do que 25 mm h⁻¹.

O novo índice de erosividade da chuva determinado por HUDSON (1973) foi denominado KE>25, o qual significa a energia cinética da chuva para intensidades de precipitação maiores do que 25 mm h⁻¹.

No Brasil, diversos trabalhos têm sido realizados para caracterizar a erosividade das chuvas em diferentes regiões, com base no índice KE>25. SILVA et al. (1997) e MARQUES et al. (1988) encontraram para Goiânia (GO) e

Sete Lagoas (MG) valores de KE>25 de 129,8 e 116,3 MJ ha⁻¹ ano⁻¹, respectivamente.

SALAKO et al. (1995) obtiveram para a região Centro-Sul da Nigéria um valor de KE>25 de 216 MJ ha⁻¹ ano⁻¹.

CARVALHO (1987), correlacionando 29 características da chuva com as perdas de solo em Mococa (SP), constatou que o KE>25 apresentou um coeficiente de correlação de 0,80 com essas perdas. Ele constatou também não existir diferença estatística entre os coeficientes de correlação do EI_{30} e do KE>25.

Segundo MARQUES et al. (1997), que estudaram diferentes índices de erosividade para a região de Sete Lagoas, o índice KE>25 proporcionou valores intermediários de coeficientes de correlação com as perdas de solo. De acordo com esses autores, uma das razões para o baixo desempenho do KE>25 no Brasil pode estar ligada às parcelas utilizadas por HUDSON (1973), que diferiram da condição-padrão proposta por WISCHMEIER e SMITH (1978).

MORAIS et al. (1988), estudando a correlação entre energia cinética da chuva e as perdas de solo de três locais do Rio Grande do Sul, obtiveram para o KE>25 os seguintes coeficientes de correlação: 0,71 em Guaíba, 0,61 em Ijuí e 0,69 em Santa Maria.

2.5. Estimativa dos índices de erosividade a partir de dados pluviométricos

Na determinação dos índices de erosividade EI_{30} e KE>25, é fundamental a existência de uma série histórica de dados pluviográficos.

Quando, em determinada região, são escassos dados de chuva obtidos a partir de pluviógrafos, o cálculo do índice de erosividade pode ser feito por correlações e uso de equações de regressão entre os índices de erosividade e dados pluviométricos (CARVALHO, 1987).

Uma maneira de utilizar as características pluviométricas é a correlação das precipitações médias mensais com os índices de erosividade médios mensais. A outra é por meio do coeficiente de chuva (Rc), que pode ser determinado conforme a proposição de Fournier, modificada por LOMBARDI NETO (1977), com base nos valores de precipitação mensal média e precipitação anual média.

CARVALHO (1987), correlacionando o índice de erosividade EI_{30} mensal médio de Mococa (SP) e o coeficiente de chuva, obteve um coeficiente de correlação altamente significativo (r = 0,99). ROQUE et al. (2001) também observaram elevada correlação entre o índice de erosividade EI_{30} médio mensal e o coeficiente de chuva para Piraju (SP). O modelo matemático que apresentou a melhor correlação foi o potencial (r = 0,96). Esse tipo de modelo também foi obtido para as cidades paulistas de Campinas, Piracicaba, Pindorama e Mococa, respectivamente por LOMBARDI NETO (1977), PEREIRA (1983), SOSA (1987) e CARVALHO (1987). No entanto, em Lages (SC), Campos Novos (SC) e Teodoro Sampaio (SP), BERTOL (1993), BERTOL (1994) e COLODRO (1999), respectivamente, verificaram que a melhor correlação foi a do tipo linear.

OLIVEIRA JÚNIOR e MEDINA (1990) encontraram coeficientes de correlação entre o EI_{30} e a precipitação média mensal de 0,73 e, entre o EI_{30} e o Rc, de 0,72. Segundo esses autores, as correlações não foram elevadas, mas significativas pelo teste "t", em nível de 1% de probabilidade. Tais coeficientes ficaram abaixo dos obtidos por OLIVEIRA JÚNIOR (1988) para as correlações entre a erosividade e as precipitações pluviais ocorridas nos municípios paraenses de Bragança e Marabá, ou seja, 0,99 e 0,97, respectivamente.

De acordo com SILVA et al. (1997), os coeficientes de correlação indicaram que os parâmetros precipitação média mensal e coeficiente de chuva permitem estimar a erosividade da chuva na ausência de dados pluviográficos na região de Goiânia (GO). Quando foi utilizada a precipitação média mensal em vez do coeficiente de chuva para estimar a erosividade, obtiveram-se coeficientes de determinação maiores, possibilitando maior segurança na estimativa. Os referidos autores alertaram que o uso das equações para a estimativa da erosividade está limitado a regiões que apresentam a magnitude dos parâmetros de chuva semelhante à dos estudados em Goiânia.

VAL (1985), ao avaliar os índices de erosividade das chuvas em Lavras (MG), utilizando regressão linear simples entre os índices de erosividade médios

mensais, EI_{30} e KE>25, e o coeficiente de chuva, obteve coeficientes de correlação de 0,99 e 0,98, respectivamente. Para a correlação entre os índices médios mensais EI_{30} e KE>25 e a precipitação média mensal, os coeficientes foram 0,98 e 0,99, respectivamente.

2.6. Mapas de isoerosividades

WISCHMEIER e SMITH (1965) chamam de linhas de isoerosividades as linhas que ligam pontos de mesmo valor de índice de erosividade. Os valores desse índice de qualquer localidade podem ser tomados diretamente no mapa. Os locais estudados entre tais linhas podem ter seu fator determinado por interpolação linear.

LOMBARDI NETO et al. (1981), considerando um período de 22 anos de dados, determinaram os índices de erosividade médios anuais para 115 localidades do Estado de São Paulo, a partir da equação de correlação entre o índice de erosividade médio mensal e o coeficiente de chuva. Os valores obtidos variaram de 5.866 a 11.772 MJ mm ha⁻¹ h⁻¹ ano⁻¹, com os quais foi traçado o mapa de isoerosividades daquele Estado.

RUFINO et al. (1993) delimitaram o potencial erosivo das chuvas para o Estado do Paraná utilizando dados pluviométricos para a determinação dos coeficientes de chuva e pluviográficos para a obtenção do EI_{30} , considerando 31 estações do Instituto Agronômico do Paraná (IAPAR) para o período de 1972 a 1989. Esses autores encontraram, para aquele Estado, oito linhas isoerosivas, as quais foram determinadas por interpolação, com uma faixa de variação de 1.000 MJ mm ha⁻¹ h⁻¹ ano⁻¹. Os valores obtidos variaram de 5.500 a 12.000 MJ mm ha⁻¹ h⁻¹ ano⁻¹.

MIKHAILOVA et al. (1997), estudando a relação da altitude e precipitação anual média na predição do índice de erosividade de chuva, desenvolveram um mapa de isoerosividade para Honduras. Com o índice de erosividade das chuvas calculado para oito estações climáticas em Honduras, foi feita uma análise de regressão para calcular o índice de erosividade como uma

16

função da precipitação anual média e da altitude, encontrando-se um coeficiente de determinação (\mathbb{R}^2) de 0,97. Esse modelo de regressão foi usado para calcular o índice de erosividade da chuva para cada uma das 344 estações climáticas hondurenhas que não dispunham de índices de erosividade calculados. As melhores estimativas dos índices de erosividade de chuva foram encontradas para estações com precipitação anual média que variaram de 831 a 1.313 mm e altitude entre 360 e 1.080 m.

3. MATERIAL E MÉTODOS

3.1. Base de dados de precipitação

Este estudo foi realizado com dados de precipitação referentes às estações pluviográficas localizadas no Estado do Rio de Janeiro e pertencentes às redes hidrometeorológicas da ANA/ANEEL, Light e SERLA. Foram utilizados os registros de pluviogramas diários, com amplitude de 10 mm de altura precipitada e menor escala de leitura de 0,1 mm e tempo de registro de 24 horas, com menor escala de leitura de 10 minutos.

No Quadro 1, encontra-se a listagem com o código e o nome das 14 estações pluviográficas utilizadas neste estudo, a entidade a que pertencem, a localização, a altitude e o período e anos de observação de cada estação analisada. Devido às falhas nas séries históricas, não foi possível selecionar um período comum de dados para todas as estações pluviográficas, denominado período-base, para fins de determinação dos índices de erosividade das chuvas. Na Figura 1 está apresentado o mapa do Estado do Rio de Janeiro com as estações pluviográficas empregadas no estudo.

De acordo com WISCHMEIER e SMITH (1978), para obter um fator R confiável, estima-se que sejam necessários de 10 a 20 anos de coleta de dados. Entretanto, outros trabalhos sobre erosividade têm sido realizados abrangendo

Estação	Código	Entidade	Município	Latitude	Longitude	Altitude (m)	Período	Anos Observados
Manuel Duarte	02243008	ANEEL	Rio das Flores	-22,0858	-43,5567	400	1989-1992	5
Santa Isabel do Rio Preto	02244033	ANEEL	Valença	-22,2311	-44,0647	567	1990-1996	7
Vila Mambucaba	02344016	ANEEL	Angra dos Reis	-23,0258	-44,5181	6	1991-1996	6
Ilha dos Pombos	02142362	Light	Carmo	-21,8433	-42,5783	146	1976-1991	15
Santa Cecília	02243205	Light	Barra do Piraí	-22,4819	-43,8392	371	1963-1996	14
Lajes	02243251	Light	Piraí	-22,7008	-43,8783	462	1966-1983	15
Tocos	02244103	Light	Rio Claro	-22,7542	-44,1197	479	1981-1999	15
Tanguá	02242091	SERLA	Rio Bonito	-22,7081	-42,7042	40	1980-1995	16
Escola União	02242094	SERLA	Magé	-22,5842	-42,9408	10	1977-1995	19
Cachoeiras de Macacu	02242095	SERLA	C. de Macacu	-22,4794	-42,6578	40	1979-1993	15
Posto Garrafão	02242098	SERLA	Magé	-22,4822	-42,9961	640	1980-1995	16
Rio Mole	02242101	SERLA	Saquarema	-22,8531	-42,5519	10	1980-1994	15
Eletrobrás	02243083	SERLA	R. de Janeiro	-22,9217	-43,4200	40	1979-1995	17
Capela Mayrink	02243239	SERLA	R. de Janeiro	-22,9578	-43,2778	460	1980-1995	16
Fonte: ANEEL (2001).								

Quadro 1 – Caracterização das estações pluviográficas situadas no Estado do Rio de Janeiro e utilizadas no estudo

Figura 1 – Mapa do Estado do Rio de Janeiro subdividido em mesorregiões, com as estações pluviográficas da ANEEL, Light e SERLA.

um número de anos inferior ao recomendado, em função da grande dificuldade de obtenção de base de dados pluviográficos (RUFINO, 1986; MEDINA e OLIVEIRA JÚNIOR, 1987; MOURA e MEDEIROS, 1987; MORAIS et al., 1991; MARQUES et al., 1997).

No presente trabalho, 11 das 14 estações pluviográficas utilizadas apresentavam de 14 a 19 anos de dados, entretanto as Estações Manuel Duarte, Vila Mambucaba e Santa Isabel do Rio Preto, pertencentes à rede hidrometeorológica da ANA/ANEEL, apresentavam apenas de cinco a sete anos de observações. A utilização dessas estações, mesmo considerando o pequeno período de observações, deveu-se ao fato de elas estarem localizadas em regiões do Estado do Rio de Janeiro que não apresentavam outras informações disponíveis, por isso a exclusão delas do estudo prejudicaria a obtenção dos mapas de isoerosividades.

Os dados pluviográficos foram convertidos no formato digital por digitalização dos mesmos com uso do Sistema para Digitalização de Pluviogramas (HidroGraph 1.02), desenvolvido pelo Grupo de Pesquisa em

20

Recursos Hídricos (http://www.ufv.br/dea/gprh) do Departamento de Engenharia Agrícola da Universidade Federal de Viçosa para a Agência Nacional de Águas (ANA). Na Figura 2 está apresentado o exemplo de um pluviograma digitalizado com o uso do HidroGraph 1.02, em que os pontos verdes e vermelhos representam os pontos digitalizados.

3.2. Critérios utilizados para a identificação de chuvas erosivas

Os critérios adotados para individualização das chuvas erosivas foram baseados naqueles propostos por WISCHMEIER e SMITH (1965) e modificados por CABEDA (1976). De posse dos pluviogramas, consideraram-se chuvas erosivas aquelas que apresentaram altura total precipitada igual ou superior a 10 mm. Para totais precipitados inferiores a 10 mm, as chuvas foram consideradas erosivas apenas quando a lâmina precipitada em 15 minutos foi de 6 mm ou mais.

Eventos independentes foram considerados como aqueles ocorridos em intervalo igual ou superior a seis horas consecutivas, em que a precipitação, nesse intervalo, foi inferior a 1 mm.

3.3. Determinação da energia cinética

A energia cinética das chuvas foi determinada por meio das equações sugeridas por FOSTER et al. (1981) e WAGNER e MASSAMBANI (1988), respectivamente:

$$EC = 0,119 + 0,0873 \log I$$
 (2)

$$EC = 0,153 + 0,0645 \log I \tag{3}$$

em que:

 $EC = energia cinética, em MJ ha^{-1} mm^{-1}; e$

I = intensidade de chuva, em mm h^{-1} .

Segundo FOSTER et al. (1981), o diâmetro das gotas de chuva não aumenta quando as intensidades são iguais ou superiores a 76 mm h^{-1} e, dessa forma, a energia cinética passa a ter um valor máximo de 0,283 MJ ha^{-1} mm⁻¹.

3.4. Determinação do índice de erosividade EI₃₀

A determinação do EI_{30} foi feita com base na metodologia proposta por WISCHMEIER e SMITH (1958), de acordo com os seguintes procedimentos:

- Utilização do software HidroGraph 1.02 para obtenção da tabela com os valores precipitados interpolados, em intervalos de 10 minutos, que foram importados para planilhas eletrônicas do Microsoft Excel, onde os dados foram manipulados.
- Determinação da intensidade para cada um dos intervalos, em mm h⁻¹, com base na tabela com os valores precipitados em intervalos de 10 minutos.
- Determinação das energias cinéticas parciais para cada uma das intensidades, nos respectivos intervalos, com o uso das equações propostas por FOSTER et al. (1981) e WAGNER e MASSAMBANI (1988).
- Soma dos valores do produto das energias cinéticas parciais calculadas para a intensidade de cada intervalo, em MJ ha⁻¹ mm⁻¹, pela altura precipitada no respectivo intervalo, em mm, resultando na energia total da chuva, em MJ ha⁻¹.
- Obtenção da máxima intensidade de precipitação em 30 minutos consecutivos (I₃₀).

 Obtenção do índice EI₃₀, em MJ mm ha⁻¹ h⁻¹, pela multiplicação da energia cinética total pela intensidade de precipitação máxima em 30 minutos consecutivos.

3.5. Determinação do índice de erosividade KE>25

A determinação do índice de erosividade KE>25 foi feita com base na metodologia desenvolvida por HUDSON (1973), abrangendo as seguintes etapas:

- Utilização do software HidroGraph 1.02 para obtenção da tabela com os valores precipitados interpolados, em intervalos de 10 minutos, que foram importados para planilhas eletrônicas do Microsoft Excel, onde os dados foram manipulados.
- Determinação da intensidade para cada um dos intervalos, em mm h⁻¹, com base na tabela com os valores precipitados em intervalos de 10 minutos.
- Determinação das energias cinéticas parciais para as intensidades superiores ou iguais a 25 mm h⁻¹, nos respectivos intervalos, com o uso das equações sugeridas por FOSTER et al. (1981) e WAGNER e MASSAMBANI (1988), conforme descrito no item 3.3.
- Soma dos valores do produto das energias cinéticas parciais, calculadas para intensidades maiores que 25 mm h⁻¹, em MJ ha⁻¹ mm⁻¹, pela altura precipitada nos respectivos intervalos, em mm, resultando na energia total da chuva, em MJ ha⁻¹.
3.6. Determinação da erosividade da chuva (fator R da USLE)

Pelo somatório dos valores dos índices EI_{30} e KE>25 das chuvas erosivas ocorridas em cada mês foram obtidos os índices EI_{30} e KE>25 mensais. O fator de erosividade da chuva (R) foi conseguido pela soma dos valores das médias mensais da série histórica desses índices. Nesse caso, foi obtido um fator R relativo ao índice EI_{30} e outro relativo ao KE>25, para cada uma das metodologias de obtenção da energia cinética. Como foram duas metodologias, isso resultou em quatro índices de erosividade.

3.7. Estimativa dos índices de erosividade mensais médios a partir de dados pluviométricos

A estimativa dos índices de erosividade mensais médios a partir de dados pluviométricos foi feita por meio de correlações dos índices de erosividade, obtidos a partir da base de dados pluviográficos com a precipitação mensal média e com o coeficiente de chuva (Rc).

Esse coeficiente foi obtido empregando-se os dados pluviométricos mensais médios correspondentes a cada uma das estações utilizadas no estudo de erosividade, com base na equação 4, proposta por FOURNIER (1956) e modificada por LOMBARDI NETO (1977):

$$Rc = \frac{p^2}{P}$$
(4)

em que:

Rc = coeficiente de chuva, em mm;

p = precipitação mensal média, em mm; e

P = precipitação anual média, em mm.

Foi ajustada uma equação de regressão que correlacionou o índice de erosividade EI₃₀ mensal médio, obtido a partir dos dados pluviográficos, com a

precipitação mensal média e outra equação, que correlacionou esse mesmo índice com o coeficiente de chuva (Rc). Para o índice KE>25, procedeu-se da mesma forma, sendo ajustadas outras duas equações de regressão correlacionando a precipitação mensal média e o coeficiente de chuva (Rc), obtido a partir de dados pluviométricos com o índice de erosividade KE>25 mensal médio.

O objetivo dos ajustes das equações de regressão foi escolher aquelas que melhor estimassem os índices de erosividades EI₃₀ e KE>25 mensais médios a partir de dados pluviométricos, para cada uma das 14 localidades analisadas. As equações obtidas podem ser utilizadas para a estimativa da erosividade da chuva em outras localidades que não disponham de informações pluviográficas, mas que tenham características de chuvas semelhantes às dos locais estudados.

Dessa forma, foram obtidas oito equações de regressão para cada uma das localidades, já que se tratava de duas metodologias para o cálculo da energia cinética das chuvas e de dois índices de erosividade da chuva obtidos a partir de dados pluviográficos e pluviométricos (precipitação mensal média e coeficiente de chuva).

3.8. Mapas de isoerosividade

A metodologia utilizada na elaboração dos mapas temáticos com os índices de erosividade EI_{30} e KE>25 para o Estado do Rio de Janeiro constou dos seguintes procedimentos:

 Uso do software de sistemas de informações geográficas ArcView GIS 3.2a com uma base de dados contendo o contorno do Estado do Rio de Janeiro em formato shape (regioes_rio.shp) e uma tabela de atributos em formato dbf (erosividades.dbf) contendo, além das coordenadas geográficas, os índices de erosividade anuais médios EI₃₀ e KE>25 de cada estação analisada.

- Adição da tabela "erosividades.dbf" à janela de visualização e posterior conversão em formato shape, recebendo o nome de "erosividades.shp".
- Determinação do "grid" de saída por meio da seleção do tema "erosividades.shp" e escolha da opção *Interpolat Grid* no *menu Surface*, resultando em um "grid" com 600 linhas, 906 colunas e tamanho de célula de 0,00432 grau decimal.
- Especificação do método IDW (inverso do expoente da distância) para a superfície de interporlação. O método de interpolação IDW foi usado por assumir que cada ponto de contribuição tem influência local que diminui com a distância. O expoente de potência no IDW controla a importância dos pontos circunvizinhos no valor interpolado. Um expoente mais alto resulta em menos influência de pontos distantes, sendo o utilizado de quinta potência, por ser o que melhor representou visualmente os dados.
- Obtenção do "grid" "surface from erosividade.shp" resultante dos procedimentos anteriores.
- Conversão do mapa "regioes_rio.shp" em "regioes_grid" por meio do comando *Theme Convert to Grid*.
- Multiplicação do mapa "regioes_grid" pelo grid "surface from erosividade.shp" utilizando o comando *Map Calculator* do *menu Analysis,* o que resultou no mapa que recebeu o nome de "grid_base".
- Reclassificação do mapa "grid_base" com a escolha do comando Reclassify do menu Analysis.

- Obtenção dos mapas "erosividade EI_{30} " contendo 12 classes de erosividade, com variação de 1.000 MJ mm ha⁻¹ h⁻¹ ano⁻¹ e "erosividade KE>25", com 14 classes e variação de 10 MJ ha⁻¹ ano⁻¹.

As regiões Norte e Noroeste do Estado do Rio de Janeiro não foram consideradas na interpolação devido à falta de seus dados pluviográficos.

4. RESULTADOS E DISCUSSÃO

4.1. Índice de erosividade EI₃₀

Nos Quadros 2 a 15 estão apresentados os valores mensais, anuais e médios, bem como as medidas estatísticas do índice de erosividade EI_{30} , correspondentes ao período de análise de cada localidade estudada, obtidos com base na metodologia para o cálculo da energia cinética proposta por FOSTER et al. (1981). Os resultados obtidos com base na metodologia para o cálculo da energia cinética sugerida por WAGNER e MASSAMBANI (1988) encontram-se no Apêndice A.

0 índice erosividade médio variou de de anual $4.118 \text{ MJ mm ha}^{-1} \text{ h}^{-1} \text{ ano}^{-1}$ na Estação Manuel Duarte а $15.806 \; \text{MJ} \; \text{mm} \; \text{ha}^{-1} \; \text{h}^{-1} \; \text{ano}^{-1} \; \text{na} \; \text{Estação} \; \text{Posto} \; \text{Garrafão.} \; \text{O} \; \text{valor} \; \text{do} \; \text{EI}_{30} \; \text{anual}$ Manuel Duarte foi semelhante de aos de Pelotas (RS) médio $(3.924 \text{ MJ mm ha}^{-1} \text{ h}^{-1} \text{ ano}^{-1})$, obtidos por LAGO (1984), e nas localidades de Areias, Itaporama e Guarabira paraibanas (3.875, 4.150 e 4.159 MJ mm ha⁻¹ h⁻¹ ano⁻¹, respectivamente), por CHAVES e DINIZ (1981).

Os valores apresentados na literatura que mais se aproximam do índice de erosividade anual médio obtido no Posto Garrafão são os de Manaus (AM) (14.129 MJ mm ha⁻¹ h⁻¹ ano⁻¹), conseguidos por OLIVEIRA JÚNIOR e

29

Quadro 2 – Valores mensais, anuais e médios do índice de erosividade EI₃₀, em MJ mm ha⁻¹ h⁻¹ ano⁻¹, da Estação Manuel Duarte, obtidos com base na metodologia para o cálculo da energia cinética proposta por FOSTER et al. (1981), com as respectivas medidas estatísticas de dispersão

Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set.	Out.	Nov.	Dez.	Total
1989	1.840	487	155	484	30	55	21	258	47	14	164	358	3.912
1990	817	420	638	225	40	0	25	0	96	199	252	109	2.819
1991	1.107	730	80	408	6	24	21	0	249	115	-	-	2.742
1993	534	294	477	1.584	0	0	0	0	185	835	1.080	1.187	6.175
1994	426	413	2.565	97	0	18	0	0	0	249	233	78	4.079
Média	945	469	783	560	15	19	13	52	115	282	432	433	4.118
D. P.	566	162	1.022	592	18	23	12	115	102	321	434	518	1.388
C. V. (%)	60	34	131	106	121	117	92	224	88	114	100	120	34
E. P. M.	253	72	457	265	8	10	5	52	45	144	217	259	621

Quadro 3 – Valores mensais, anuais e médios do índice de erosividade EI₃₀, em MJ mm ha⁻¹ h⁻¹ ano⁻¹, da Estação Santa Isabel do Rio Preto, obtidos com base na metodologia para o cálculo da energia cinética proposta por FOSTER et al. (1981), com as respectivas medidas estatísticas de dispersão

Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set.	Out.	Nov.	Dez.	Total
1990	936	491	1.452	1.217	160	0	551	0	129	108	870	951	6.866
1991	2.176	1.511	2.444	1.223	8	0	67	0	80	138	52	1.019	8.719
1992	1.362	300	979	1.111	98	0	16	0	301	643	406	309	5.527
1993	357	1.740	1.315	390	25	165	0	0	340	1.081	94	544	6.052
1994	564	153	1.114	208	132	0	0	0	0	53	136	359	2.719
1995	661	167	148	0	131	0	35	0	1.422	2.391	707	1.729	7.389
1996	1.213	2.682	1.958	1.317	0	2	0	135	351	572	966	2.328	11.524
Média	1.038	1.006	1.344	781	79	24	95	19	375	712	462	1.034	6.971
D. P.	615	983	732	559	67	62	202	51	482	827	386	751	2.738
C. V. (%)	59	98	54	72	84	262	212	265	128	116	84	73	39
E. P. M.	233	371	277	211	25	24	76	19	182	313	146	284	1.035

Quadro 4 – Valores mensais, anuais e médios do índice de erosividade EI₃₀, em MJ mm ha⁻¹ h⁻¹ ano⁻¹, da Estação Vila Mambucaba, obtidos com base na metodologia para o cálculo da energia cinética proposta por FOSTER et al. (1981), com as respectivas medidas estatísticas de dispersão

Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set.	Out.	Nov.	Dez.	Total
1991	510	1.517	3.069	1.645	1.291	372	201	0	234	207	16	356	9.418
1992	3.433	288	100	124	80	63	45	219	263	616	1.226	232	6.689
1993	3.556	1.737	429	248	16	64	28	0	219	358	149	180	6.985
1994	246	133	4.456	2.691	0	461	32	0	143	192	240	2.364	10.956
1995	1.133	709	2.887	50	388	104	40	178	191	587	3.330	345	9.943
1996	0	9.249	3.713	2.335	153	112	74	45	388	125	457	198	16.848
Média	1.480	2.272	2.442	1.182	321	196	70	74	240	347	903	613	10.140
D. P.	1.606	3.478	1.778	1.191	495	174	66	99	83	211	1.264	861	3.690
C. V. (%)	109	153	73	101	154	89	94	135	35	61	140	141	36
E. P. M.	656	1.420	726	486	202	71	27	41	34	86	516	352	1.507

Quadro 5 – Valores mensais, anuais e médios do índice de erosividade EI₃₀, em MJ mm ha⁻¹ h⁻¹ ano⁻¹, da Estação Ilha dos Pombos, obtidos com base na metodologia para o cálculo da energia cinética proposta por FOSTER et al. (1981), com as respectivas medidas estatísticas de dispersão

Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set.	Out.	Nov.	Dez.	Total
1976	1.709	695	1.238	0	85	0	4	309	149	753	884	1.266	7.091
1977	2.186	0	373	611	126	0	0	0	246	781	610	811	5.744
1978	546	499	657	231	253	24	0	0	0	598	1.989	1.747	6.543
1979	242	3.308	994	379	35	0	49	684	15	248	1.304	1.649	8.907
1980	854	460	0	253	0	0	0	0	28	136	121	197	2.049
1981	190	101	365	63	0	0	0	0	752	89	662	1.252	3.474
1982	697	26	3.641	58	47	0	24	277	0	261	694	3.711	9.435
1983	2.979	1.333	2.097	577	297	47	0	0	275	628	211	1.068	9.511
1984	272	0	1.481	617	74	0	0	0	337	52	189	863	3.885
1985	1.621	836	849	125	0	218	0	328	698	987	0	1.559	7.221
1986	595	346	1.082	48	0	0	10	53	231	0	831	140	3.335
1988	25	870	0	7	243	105	0	0	21	0	0	646	1.918
1989	1.292	799	490	159	0	0	68	0	0	148	73	247	3.276
1990	905	3.668	0	0	0	0	17	0	113	171	391	856	6.120
1991	70	933	679	506	0	0	0	0	15	0	838	3.241	6.282
Média	946	925	930	242	77	26	11	110	192	323	586	1.284	5.653
D. P.	859	1.114	952	235	105	60	21	202	245	332	549	1.026	2.557
C. V. (%)	91	120	102	97	135	230	181	183	128	103	94	80	45
E. P. M.	222	288	246	61	27	16	5	52	63	86	142	265	660

Quadro 6 – Valores mensais, anuais e médios do índice de erosividade EI_{30} , em MJ mm ha⁻¹ h⁻¹ ano⁻¹, da Estação Santa Cecília, obtidos com base na metodologia para o cálculo da energia cinética proposta por FOSTER et al. (1981), com as respectivas medidas estatísticas de dispersão

Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set.	Out.	Nov.	Dez.	Total
1963	715	666	334	1.009	0	0	0	0	0	36	711	381	3.853
1964	95	3.206	3	0	29	0	14	0	0	515	180	300	4.342
1973	2.490	570	355	495	17	0	31	109	36	261	270	767	5.401
1974	824	376	966	41	0	384	0	0	0	365	153	1.359	4.467
1975	618	1.407	31	101	110	56	0	0	19	699	1.527	1.013	5.582
1976	3.511	1.536	1.020	703	58	88	6	165	18	121	509	784	8.518
1982	1.203	464	822	0	0	0	74	0	0	156	569	1.166	4.454
1986	62	56	138	233	0	0	67	60	218	0	0	874	1.707
1988	1.049	1.128	472	133	270	20	0	0	12	677	89	1.556	5.404
1990	1.857	514	1.161	241	0	0	279	0	112	909	1.402	201	6.677
1991	887	803	1.982	546	54	251	0	0	135	371	549	4.164	9.742
1992	0	37	666	472	52	0	5	0	170	38	963	912	3.317
1993	545	625	519	140	55	13	0	0	8	13	176	501	2.594
1996	649	127	1.778	802	10	3	0	88	140	113	15	0	3.725
Média	1.036	822	732	351	47	58	34	30	62	305	508	999	4.985
D. P.	984	826	606	323	72	116	75	54	76	294	494	1.014	2.180
C. V. (%)	95	100	83	92	154	199	220	179	123	96	97	102	44
E. P. M.	263	221	162	86	19	31	20	14	20	79	132	271	583

Quadro 7 – Valores mensais, anuais e médios do índice de erosividade EI₃₀, em MJ mm ha⁻¹ h⁻¹ ano⁻¹, da Estação Lajes, obtidos com base na metodologia para o cálculo da energia cinética proposta por FOSTER et al. (1981), com as respectivas medidas estatísticas de dispersão

Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set.	Out.	Nov.	Dez.	Total
1966	1.802	849	3.136	603	985	0	62	20	0	323	3.532	2.851	14.162
1967	9.724	688	3.236	87	0	0	36	0	3	69	95	770	14.707
1968	1.072	241	319	33	0	0	0	67	22	24	551	355	2.686
1969	1.134	129	206	608	30	41	0	16	272	487	749	511	4.185
1970	341	151	236	110	0	7	9	767	211	1.855	906	499	5.094
1971	1.358	1.044	0	90	84	54	128	13	311	1.030	1.358	905	6.376
1973	756	461	473	938	49	0	72	58	0	420	1.454	2.103	6.785
1974	336	3.604	362	274	65	123	0	0	0	739	604	1.857	7.963
1977	2.122	0	405	371	0	88	56	80	221	33	168	1.085	4.629
1978	103	1.512	536	242	30	59	72	9	0	192	455	1.170	4.381
1979	2.207	359	1.079	48	0	0	17	470	246	937	450	961	6.774
1980	1.097	400	808	397	0	17	0	16	27	121	612	1.504	4.998
1981	337	0	333	661	16	0	5	59	26	400	1.752	1.677	5.264
1982	2.195	728	915	5	0	96	85	102	46	377	443	749	5.740
1983	1.941	137	2.053	476	103	290	53	0	572	148	504	629	6.907
Média	1.756	726	860	319	90	35	39	120	99	500	938	1.214	6.696
D. P.	2.406	933	1.027	289	259	43	41	221	121	504	888	708	3.403
C. V. (%)	137	128	119	90	288	123	106	185	123	101	95	58	51
E. P. M.	621	241	265	75	67	11	11	57	31	130	229	183	879

Quadro 8 – Valores mensais, anuais e médios do índice de erosividade EI₃₀, em MJ mm ha⁻¹ h⁻¹ ano⁻¹, da Estação Tocos, obtidos com base na metodologia para o cálculo da energia cinética proposta por FOSTER et al. (1981), com as respectivas medidas estatísticas de dispersão

Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set.	Out.	Nov.	Dez.	Total
1981	3.205	238	430	219	30	147	0	66	0	224	1.216	1.694	7.468
1982	105	841	612	11	0	74	14	69	141	1.266	345	2.145	5.624
1983	1.724	179	1.120	336	209	328	31	55	184	37	361	952	5.516
1984	732	116	297	938	512	0	0	28	176	22	274	3.000	6.097
1985	1.746	2.056	3.536	87	21	0	0	44	141	125	2.116	3.921	13.792
1986	463	1.820	664	117	195	0	74	46	28	7	751	4.116	8.279
1987	1.479	1.216	197	2.032	201	196	14	0	178	251	234	2.246	8.245
1988	2.280	4.987	917	147	173	0	0	0	6	757	252	610	10.130
1993	705	1.982	2.751	1.415	29	116	0	0	109	136	299	1.330	8.873
1994	2.543	20	4.027	174	0	99	35	0	0	0	135	4.402	11.435
1995	3.982	2.071	390	10	95	63	15	9	378	474	156	1.855	9.498
1996	1.173	2.709	1.521	43	12	8	0	11	379	219	902	1.705	8.683
1997	2.523	600	198	57	126	0	21	24	6	114	349	186	4.204
1998	4.906	2.165	394	162	76	21	73	0	456	353	385	994	9.984
1999	6.650	4.007	1.747	675	30	174	0	0	111	0	3.387	848	17.629
Média	2.281	1.667	1.253	428	114	82	18	23	153	266	744	2.000	9.031
D. P.	1.798	1.456	1.244	597	135	97	25	26	148	346	900	1.318	3.426
C. V. (%)	79	87	99	139	118	118	137	111	97	130	121	66	38
E. P. M.	464	376	321	154	35	25	7	7	38	89	232	340	885

Quadro 9 – Valores mensais, anuais e médios do índice de erosividade EI₃₀, em MJ mm ha⁻¹ h⁻¹ ano⁻¹, da Estação Tanguá, obtidos com base na metodologia para o cálculo da energia cinética proposta por FOSTER et al. (1981), com as respectivas medidas estatísticas de dispersão

Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set.	Out.	Nov.	Dez.	Total
1980	581	411	0	369	316	36	5	26	40	129	261	768	2.944
1981	1.386	238	357	1.076	0	0	47	9	7	6	472	2.698	6.297
1982	865	449	680	139	80	23	342	168	0	868	433	356	4.403
1983	2.990	72	1.498	542	187	208	52	0	245	114	981	390	7.278
1984	221	0	879	416	1.452	0	0	0	0	0	13	125	3.105
1985	470	543	1.886	462	0	314	11	195	169	0	190	1.075	5.315
1986	1.434	2.104	1.007	359	61	0	162	0	113	104	327	1.470	7.141
1987	352	1.846	274	840	103	22	859	6	16	20	54	1.243	5.637
1988	524	4.824	129	182	100	40	161	12	0	713	680	1.128	8.492
1989	204	1.651	899	294	75	401	105	13	78	66	121	356	4.262
1990	127	892	864	2.721	91	18	207	41	79	144	1.100	71	6.355
1991	809	1.315	1.110	564	68	193	0	4	266	99	110	1.392	5.929
1992	1.255	428	0	804	0	0	0	6	394	261	1.506	206	4.861
1993	149	1.129	1.255	0	272	21	0	0	0	0	274	748	3.847
1994	331	46	1.098	516	710	226	40	32	12	0	164	427	3.603
1995	1.037	1.273	435	73	1.051	15	69	45	26	151	984	0	5.161
Média	796	1.076	773	585	285	95	129	35	90	167	479	778	5.289
D. P.	732	1.201	545	638	422	130	217	59	119	256	443	705	1.583
C. V. (%)	92	112	71	109	148	137	169	170	132	153	92	91	30
E. P. M.	183	300	136	160	106	32	54	15	30	64	111	176	396

Quadro 10 – Valores mensais, anuais e médios do índice de erosividade EI₃₀, em MJ mm ha⁻¹ h⁻¹ ano⁻¹, da Estação Escola União, obtidos com base na metodologia para o cálculo da energia cinética proposta por FOSTER et al. (1981), com as respectivas medidas estatísticas de dispersão

Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set.	Out.	Nov.	Dez.	Total
1977	4.356	0	4.571	461	0	0	0	0	177	0	213	2.504	12.282
1978	2.584	1.851	275	941	323	48	0	54	0	72	1.009	861	8.020
1979	849	1.728	1.174	300	55	103	523	323	31	387	893	528	6.893
1980	2.904	1.418	0	1.125	106	439	108	82	13	286	242	1.917	8.640
1981	429	672	440	113	0	0	86	42	6	93	2.217	3.792	7.891
1982	2.130	2.119	881	316	0	27	182	335	17	401	832	4.864	12.104
1983	2.337	607	2.578	302	246	569	115	32	194	156	1.417	1.910	10.462
1984	460	170	242	554	336	3	19	10	8	0	21	662	2.485
1985	1.944	7.195	2.426	1.455	252	37	0	262	894	476	799	241	15.980
1986	1.946	1.206	2.066	394	87	0	117	29	339	115	209	3.453	9.960
1987	1.910	669	1.020	387	90	273	10	8	105	297	52	1.207	6.029
1988	4.164	9.624	281	2.840	568	201	239	0	22	566	1.025	6.372	25.903
1989	1.752	2.534	1.688	1.198	723	708	258	65	123	91	541	188	9.868
1990	396	2.054	1.447	401	882	99	35	63	214	183	3.720	378	9.871
1991	1.096	1.171	1.424	1.006	182	67	51	17	267	193	379	2.495	8.347
1992	1.491	540	206	327	13	0	308	52	601	615	1.584	949	6.687
1993	1.274	2.294	2.161	545	54	21	15	0	87	44	1.085	1.546	9.126
1994	856	1.470	4.371	456	516	352	0	0	29	299	615	3.022	11.987
1995	2.738	2.119	1.122	116	2.034	29	7	42	266	471	-	-	8.945
Média	1.875	2.076	1.493	697	340	157	109	75	179	250	936	2.049	10.235
D. P.	1.142	2.385	1.312	644	485	214	139	107	231	192	902	1.721	4.773
C. V. (%)	61	115	88	92	142	136	128	144	129	77	96	84	47
E. P. M.	262	547	301	148	111	49	32	25	53	44	213	406	1.095

Quadro 11 – Valores mensais, anuais e médios do índice de erosividade EI₃₀, em MJ mm ha⁻¹ h⁻¹ ano⁻¹, da Estação Cachoeiras de Macacu, obtidos com base na metodologia para o cálculo da energia cinética proposta por FOSTER et al. (1981), com as respectivas medidas estatísticas de dispersão

Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set.	Out.	Nov.	Dez.	Total
1979	2.542	912	553	1.073	322	17	676	355	177	1.166	1.602	3.581	12.975
1980	0	992	471	1.099	85	136	24	49	67	36	1.822	6.148	10.929
1981	219	1.018	1.097	1.118	119	0	69	0	0	6	2.219	4.024	9.889
1982	777	1.650	277	105	15	36	0	171	37	129	0	282	3.480
1983	407	1.014	657	406	142	499	77	0	437	145	1.023	1.312	6.118
1984	587	132	546	1.106	28	0	6	73	22	0	437	656	3.594
1985	2.176	1.773	1.985	780	12	0	0	146	271	262	741	268	8.413
1986	1.682	373	1.401	1.098	113	0	71	21	210	400	480	3.809	9.658
1987	1.830	849	754	575	273	77	13	9	8	149	198	2.819	7.553
1988	790	3.072	326	318	585	46	61	12	9	476	550	986	7.229
1989	1.471	1.738	912	785	149	291	119	75	175	24	0	778	6.517
1990	68	1.162	1.453	2.583	411	0	110	10	198	1.144	1.839	347	9.325
1991	961	2.071	1.243	833	149	135	34	29	379	328	223	1.436	7.823
1992	1.004	591	495	1.972	136	83	95	9	375	1.075	1.267	866	7.970
1993	972	2.709	1.953	19	209	0	13	14	169	521	559	809	7.947
Média	1.032	1.337	941	925	183	88	91	65	169	391	864	1.875	7.961
D. P.	766	828	558	671	158	139	167	96	146	417	723	1.773	2.507
C. V. (%)	74	62	59	73	86	158	183	148	87	107	84	95	31
E. P. M.	198	214	144	173	41	36	43	25	38	108	187	458	647

Quadro 12 – Valores mensais, anuais e médios do índice de erosividade EI₃₀, em MJ mm ha⁻¹ h⁻¹ ano⁻¹, da Estação Posto Garrafão, obtidos com base na metodologia para o cálculo da energia cinética proposta por FOSTER et al. (1981), com as respectivas medidas estatísticas de dispersão

Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set.	Out.	Nov.	Dez.	Total
1980	1.218	270	1.380	1.126	185	84	195	264	78	698	353	2.532	8.382
1981	4.842	5.422	5.895	1.320	46	32	94	47	109	212	875	6.935	25.829
1982	1.150	735	3.750	1.141	64	2.031	71	724	15	289	213	4.041	14.223
1983	1.348	4.242	4.566	758	522	442	131	16	586	579	798	1.296	15.285
1984	1.185	490	2.605	504	933	18	110	261	72	381	903	1.304	8.765
1985	3.240	1.541	1.928	1.133	61	6	151	0	236	361	2.175	106	10.938
1986	513	4.153	1.672	1.020	172	0	2.052	132	551	258	705	4.954	16.183
1987	2.986	779	2.573	1.105	190	146	27	70	109	336	3.802	1.423	13.546
1988	889	11.835	689	2.568	1.044	183	146	10	127	1.413	2.507	3.663	25.074
1989	1.332	3.748	6.348	487	483	1.332	214	64	154	179	74	1.654	16.070
1990	574	3.950	459	3.119	346	175	46	278	227	1.232	4.183	2.734	17.323
1991	9.656	2.643	2.157	2.143	633	370	58	2	1.275	238	1.104	3.441	23.719
1992	1.565	153	1.794	1.082	89	0	53	30	943	817	3.007	1.042	10.575
1993	2.393	2.452	5.306	374	95	10	6	0	1.328	447	1.670	312	14.393
1994	0	767	6.412	2.382	1.198	0	0	17	222	1.965	2.800	3.506	19.269
1995	2.579	1.845	1.215	298	440	417	26	45	0	313	1.658	4.483	13.318
Média	2.217	2.814	3.047	1.285	406	328	211	122	377	607	1.677	2.714	15.806
D. P.	2.331	2.927	2.042	836	374	564	495	188	438	512	1.279	1.861	5.387
C. V. (%)	105	104	67	65	92	172	234	154	116	84	76	69	34
E. P. M.	583	732	511	209	94	141	124	47	110	128	320	465	1.347

Quadro 13 – Valores mensais, anuais e médios do índice de erosividade EI₃₀, em MJ mm ha⁻¹ h⁻¹ ano⁻¹, da Estação Rio Mole, obtidos com base na metodologia para o cálculo da energia cinética proposta por FOSTER et al. (1981), com as respectivas medidas estatísticas de dispersão

Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set.	Out.	Nov.	Dez.	Total
1980	971	0	487	75	104	176	85	91	91	255	432	528	3.296
1981	275	120	85	0	0	18	39	75	11	19	39	1.489	2.168
1982	292	33	2.380	530	0	57	541	22	62	43	73	1.402	5.434
1983	24	162	986	394	282	86	84	8	312	117	445	3.547	6.446
1984	580	184	60	102	473	16	7	39	0	79	0	183	1.723
1985	823	735	925	434	82	57	0	89	52	333	204	729	4.463
1986	398	2.430	629	254	295	0	770	48	141	74	154	2.530	7.724
1987	144	719	213	2.137	84	2.061	32	20	57	88	105	392	6.052
1988	263	1.793	50	1.669	456	957	653	0	17	397	1.393	552	8.202
1989	611	1.285	336	915	213	1.502	412	38	233	152	161	59	5.918
1990	48	388	1.929	7.040	1.716	116	118	72	208	385	2.708	136	14.865
1991	609	308	2.671	242	217	85	115	19	24	0	76	139	4.504
1992	243	58	82	871	12	28	650	66	310	420	449	47	3.236
1993	226	1.135	239	270	654	78	66	141	177	249	36	175	3.447
1994	76	0	838	650	271	1.520	111	0	149	0	439	190	4.243
Média	372	623	794	1.039	324	450	246	48	123	174	448	807	5.448
D. P.	287	737	864	1.764	430	695	275	40	106	152	715	1.029	3.213
C. V. (%)	77	118	109	170	133	154	112	83	86	87	160	128	59
E. P. M.	74	190	223	456	111	179	71	10	27	39	185	266	830

Quadro 14 – Valores mensais, anuais e médios do índice de erosividade EI₃₀, em MJ mm ha⁻¹ h⁻¹ ano⁻¹, da Estação Eletrobrás, obtidos com base na metodologia para o cálculo da energia cinética proposta por FOSTER et al. (1981), com as respectivas medidas estatísticas de dispersão

Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set.	Out.	Nov.	Dez.	Total
1979	1.057	200	149	447	198	16	175	444	161	0	128	1.580	4.555
1980	746	244	193	250	18	146	106	83	42	694	567	1.157	4.246
1981	1.304	98	732	606	24	778	140	327	7	79	597	2.815	7.507
1982	344	84	109	194	0	31	58	31	0	373	269	528	2.022
1983	0	0	1.279	199	197	241	29	0	271	79	792	1.498	4.587
1984	732	0	431	431	459	0	36	89	84	0	0	20	2.282
1985	1.590	890	840	835	11	267	0	241	135	241	111	819	5.981
1986	13	2.028	1.101	557	119	7	595	18	198	577	46	261	5.523
1987	445	1.122	60	1.479	181	194	79	6	93	139	18	844	4.660
1988	194	3.646	753	1.194	184	318	80	0	26	243	434	199	7.270
1989	281	996	137	406	29	1.017	203	129	87	18	451	297	4.052
1990	74	97	69	1.278	708	243	0	44	97	1.039	501	130	4.280
1991	317	1.177	432	596	464	69	113	6	72	84	108	1.084	4.521
1992	1.662	0	143	298	0	18	82	376	172	263	569	110	3.692
1993	0	85	964	502	66	62	0	12	31	151	273	1.171	3.316
1994	789	151	1.436	124	380	793	174	24	80	16	343	250	4.560
1995	356	125	97	33	182	37	21	0	0	253	538	773	2.415
Média	582	644	525	555	189	249	111	108	91	250	338	796	4.439
D. P.	543	967	465	418	203	313	140	146	76	283	241	721	1.535
C. V. (%)	93	150	89	75	107	126	126	136	83	113	71	91	35
E. P. M.	132	235	113	101	49	76	34	35	18	69	58	175	372

Quadro 15 – Valores mensais, anuais e médios do índice de erosividade EI₃₀, em MJ mm ha⁻¹ h⁻¹ ano⁻¹, da Estação Capela Mayrink, obtidos com base na metodologia para o cálculo da energia cinética proposta por FOSTER et al. (1981), com as respectivas medidas estatísticas de dispersão

Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set.	Out.	Nov.	Dez.	Total
1980	808	516	585	491	77	628	428	438	413	770	873	490	6.517
1981	1.295	0	1.664	688	791	0	391	464	277	72	953	3.443	10.037
1982	809	2.890	220	767	311	66	350	430	105	830	421	1.137	8.336
1983	1.369	239	4.131	343	503	569	64	98	629	244	1.844	1.267	11.301
1984	158	0	402	1.047	228	22	133	195	172	313	86	159	2.915
1985	1.308	635	2.101	3.338	150	347	86	214	0	30	257	1.029	9.496
1986	38	820	3.393	1.180	840	0	1.672	44	299	82	979	647	9.994
1987	1.386	2.441	503	1.184	521	963	64	79	241	289	166	951	8.788
1988	477	12.597	525	891	460	293	456	26	178	2.267	526	484	19.180
1989	676	248	302	203	660	2.583	974	58	181	351	527	548	7.311
1990	220	18	512	7.178	1.256	150	1.193	239	755	1.007	235	875	13.639
1991	508	1.303	1.149	877	760	1.029	108	292	109	0	489	1.199	7.823
1992	2.453	258	490	832	33	0	873	308	614	340	1.832	179	8.213
1993	580	1.005	3.430	1.953	739	249	91	324	22	582	339	1.504	10.818
1994	0	497	3.351	688	576	2.114	636	370	55	30	817	265	9.398
1995	617	474	495	0	0	0	78	1.529	638	608	668	430	5.539
Média	794	1.496	1.453	1.354	494	563	475	319	293	488	688	913	9.331
D. P.	641	3.076	1.371	1.737	347	777	480	354	244	567	527	790	3.605
C. V. (%)	81	206	94	128	70	138	101	111	83	116	77	86	39
E. P. M.	160	769	343	434	87	194	120	89	61	142	132	197	901

MEDINA (1990), e nos municípios paraenses de Bragança e Marabá (12.350 e 13.914 MJ mm ha⁻¹ h⁻¹ ano⁻¹, respectivamente), por OLIVEIRA JÚNIOR (1988).

Na Nigéria, SALAKO (1995) encontrou valor de EI_{30} de 18.510 MJ mm ha⁻¹ h⁻¹ ano⁻¹.

O maior e o menor valor do índice de erosividade anual foram de 25.903 e $1.707 \text{ MJ mm ha}^{-1} \text{ h}^{-1} \text{ ano}^{-1}$, nos anos de 1988 e 1986, nas Estações Escola União e Santa Cecília, respectivamente.

Analisando, nos Quadros 2 a 15, a distribuição mensal do índice de erosividade nas diferentes localidades, verificou-se que, de forma geral, as chuvas com maiores potenciais erosivos ocorrem no período de novembro a abril. Nas maioria das estações, esse foi o semestre com maior risco de erosão, à exceção da Estação Ilha dos Pombos, onde esse período foi outubro a março. Os trimestres com maiores potenciais erosivos foram dezembro a fevereiro, em algumas estações, e janeiro a março em outras. Nesses períodos com potenciais erosivos tão elevados, devem-se tomar cuidados especiais, de modo a evitar a exposição do solo, para que sejam minimizados a energia de impacto da chuva e o escoamento superficial.

As análises estatísticas correspondentes aos valores dos índices de erosividade anuais apresentaram desvios-padrão que variaram de 1.388 a $5.387 \text{ MJ} \text{ mm ha}^{-1} \text{ h}^{-1} \text{ ano}^{-1}$, nas Estações Manuel Duarte e Posto Garrafão, respectivamente. É importante ressaltar que na Estação Manuel Duarte foi analisado um período de apenas cinco anos. Outra estação de merecido destaque foi a Eletrobrás, com desvio-padrão de 1.535 MJ mm ha^{-1} h^{-1} ano^{-1}, coeficiente de variação anual de 35% e erro-padrão da média de 372 MJ mm ha^{-1} h^{-1} ano^{-1}, o menor entre todas as estações analisadas.

Os coeficientes de variação dos valores médios mensais foram mais elevados que os dos valores anuais médios, que ficaram ao redor de 40%, na maioria das estações. A Estação Tanguá foi onde se obteve o menor coeficiente de variação dos valores anuais médios (30%). A Estação Rio Mole foi a que apresentou maior coeficiente de variação anual médio, sendo esse valor correspondente a 59%.

44

As análises estatísticas apresentadas se devem ao fato de que um valor médio apenas não é suficiente para indicar como os dados se comportaram em torno desse valor. Quando o valor médio está associado ao coeficiente de variação e ao desvio-padrão, ele pode ser mais bem interpretado. No Quadro 12, onde estão apresentados os valores mensais, anuais e médios do índice de erosividade EI₃₀ da Estação Posto Garrafão, pode-se observar que o total anual, para a Estação Posto Garrafão, variou de 8.382 a 25.829 MJ mm ha⁻¹ h⁻¹ ano⁻¹, nos anos de 1980 e 1981, respectivamente. Notou-se que a média anual da série histórica foi de 15.806 MJ mm ha⁻¹ h⁻¹ ano⁻¹, com desvio-padrão de 5.387 MJ mm ha⁻¹ h⁻¹ ano⁻¹, coeficiente de variação de 34% e erro-padrão da média de 1.347 MJ mm ha⁻¹ h⁻¹ ano⁻¹. O valor isolado da média anual da série histórica de 15.806 MJ mm ha⁻¹ h⁻¹ ano⁻¹ não seria capaz de indicar quanto os dados estariam variando em torno da média.

4.2. Índice de erosividade KE>25

Nos Quadros 16 a 29 estão apresentados os valores mensais, anuais e médios, bem como as medidas estatísticas do índice de erosividade KE>25, correspondentes ao período de análise de cada localidade estudada, obtidos com base na metodologia do cálculo da energia cinética proposta FOSTER et al. (1981). Os resultados conseguidos com base na metodologia de cálculo da energia cinética proposta por WAGNER e MASSAMBANI (1988) encontram-se no Apêndice A.

O índice KE>25 anual médio variou de 42,1 MJ ha⁻¹ ano⁻¹ na Estação Manuel Duarte a 171,8 MJ ha⁻¹ ano⁻¹ na Estação Posto Garrafão. O maior e o menor valor do índice de erosividade anual foram de 276,0 e 15,8 MJ ha⁻¹ ano⁻¹, nos anos de 1981 e 1984, no Posto Garrafão e na Capela Mayrink, respectivamente.

Nota-se nos Quadros 16 a 29 que, como no EI_{30} , a análise da distribuição mensal do índice de erosividade KE>25 das diferentes localidades confirma que os maiores potenciais erosivos se concentram no período de novembro a abril. Na

maioria das estações, esse foi o semestre com maiores possibilidades de erosão, à exceção das Estações Ilha dos Pombos e Lajes, nas quais o período de outubro a março foi o mais crítico. Os trimestres com maiores potenciais erosivos foram dezembro a fevereiro em algumas estações e janeiro a março em outras. A Estação Posto Garrafão concentrou 93,4 MJ ha⁻¹ ano⁻¹ no período de janeiro a março, o que equivale a 54,3% do potencial erosivo total. Já a Estação Vila Mambucaba concentrou o maior potencial erosivo em um trimestre com 67,8% no período de janeiro a março, com 61,7 MJ ha⁻¹ ano⁻¹, enquanto a Estação Rio Mole, com 47,1% da concentração do potencial erosivo no período de fevereiro a abril, foi a única, das estações analisadas, que apresentou percentual inferior a 50% no trimestre mais crítico.

As análises estatísticas correspondentes aos valores dos índices de erosividade anuais exibiram desvios-padrão que variaram de 18,5 a 56,5 MJ ha⁻¹ ano⁻¹, nas Estações Tanguá e Posto Garrafão, respectivamente. As Estações Eletrobrás e Tanguá tiveram o menor erro-padrão da média, com 4,6 MJ ha⁻¹ ano⁻¹ cada uma.

Os coeficientes de variação dos valores médios mensais foram mais elevados que os dos valores anuais médios, que ficaram em torno de 44%, em média. A Estação Tanguá foi a que apresentou menor coeficiente de variação dos valores anuais médios (30%). A Estação Santa Isabel do Rio Preto foi a que mostrou o maior coeficiente de variação anual médio, correspondente a 56%.

4.3. Índices de erosividade anuais médios

Nos Quadros 30 e 31, encontram-se, respectivamente, os valores anuais médios dos índices de erosividade EI_{30} e KE>25 das 14 estações do Estado do Rio de Janeiro. Os índices de erosividade, calculados por meio da equação de energia cinética sugerida por FOSTER et al. (1981), receberam o índice "1" e os calculados por intermédio da equação proposta por WAGNER e MASSAMBANI (1988), o índice "2".

46

Quadro 16 – Valores mensais, anuais e médios do índice de erosividade KE>25, em MJ ha⁻¹ ano⁻¹, da Estação Manuel Duarte, obtidos com base na metodologia para o cálculo da energia cinética proposta por FOSTER et al. (1981), com as respectivas medidas estatísticas de dispersão

Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set.	Out.	Nov.	Dez.	Total
1989	19,2	0,0	1,5	2,9	0,0	0,0	0,0	2,9	0,0	0,0	2,8	0,0	29,3
1990	13,3	6,4	8,8	0,0	0,0	0,0	0,0	0,0	1,2	4,6	2,0	0,0	36,3
1991	6,4	6,1	0,0	2,4	0,0	0,0	0,0	0,0	4,9	0,0	-	-	19,7
1993	4,8	0,0	8,7	16,4	0,0	0,0	0,0	0,0	2,6	14,3	20,3	12,7	80,0
1994	1,2	5,0	25,6	1,3	0,0	0,0	0,0	0,0	0,0	1,0	1,2	0,0	35,3
Média	9,0	3,5	8,9	4,6	0,0	0,0	0,0	0,6	1,7	4,0	6,6	3,2	42,1
D. P.	7,2	3,2	10,2	6,7	0,0	0,0	0,0	1,3	2,1	6,1	9,2	6,4	23,2
C. V. (%)	80,4	92,5	113,8	145,6	-	-	-	223,6	118,3	152,6	138,8	200,0	55,2
E. P. M.	3,2	1,4	4,5	3,0	0,0	0,0	0,0	0,6	0,9	2,7	4,6	3,2	10,4

Quadro 17 – Valores mensais, anuais e médios do índice de erosividade KE>25, em MJ ha⁻¹ ano⁻¹, da Estação Santa Isabel do Rio Preto, obtidos com base na metodologia para o cálculo da energia cinética proposta por FOSTER et al. (1981), com as respectivas medidas estatísticas de dispersão

Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set.	Out.	Nov.	Dez.	Total
1990	13,7	6,7	21,3	17,7	2,7	0,0	7,3	0,0	0,0	1,2	17,8	14,9	103,4
1991	29,7	30,8	33,6	20,0	0,0	0,0	1,0	0,0	0,0	1,4	0,0	17,6	134,1
1992	11,6	5,4	6,2	13,6	0,0	0,0	0,0	0,0	3,9	7,7	2,6	0,0	51,0
1993	1,1	11,6	18,3	6,2	0,0	1,7	0,0	0,0	4,3	13,5	0,0	5,8	62,3
1994	6,2	2,3	13,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,1	22,7
1995	11,4	0,0	1,9	0,0	1,6	0,0	0,0	0,0	17,0	21,8	10,2	17,6	81,6
1996	15,6	47,6	30,1	15,1	0,0	0,0	0,0	2,6	1,6	7,0	8,2	37,6	165,2
Média	12,7	14,9	17,8	10,4	0,6	0,2	1,2	0,4	3,8	7,5	5,5	13,5	88,6
D. P.	8,9	17,7	11,7	8,3	1,1	0,6	2,7	1,0	6,1	7,9	6,8	13,0	49,4
C. V. (%)	69,9	118,5	65,7	80,0	178,0	264,6	229,0	264,6	159,8	105,1	123,5	96,2	55,8
E. P. M.	3,4	6,7	4,4	3,1	0,4	0,2	1,0	0,4	2,3	3,0	2,6	4,9	18,7

Quadro 18 – Valores mensais, anuais e médios do índice de erosividade KE>25, em MJ ha⁻¹ ano⁻¹, da Estação Vila Mambucaba, obtidos com base na metodologia para o cálculo da energia cinética proposta por FOSTER et al. (1981), com as respectivas medidas estatísticas de dispersão

Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set.	Out.	Nov.	Dez.	Total
1991	0,0	17,9	34,7	20,5	8,6	2,8	3,2	0,0	0,0	1,5	0,0	5,2	94,4
1992	58,8	0,0	1,9	3,2	0,0	1,9	0,0	4,1	2,4	0,0	2,7	0,0	74,9
1993	18,8	22,1	3,1	0,0	0,0	0,0	0,0	0,0	0,0	6,0	0,0	2,2	52,3
1994	2,4	1,4	39,8	24,4	0,0	2,5	0,0	0,0	0,0	0,0	1,0	30,7	102,2
1995	11,9	2,0	28,6	0,0	0,0	0,0	0,0	0,0	0,0	2,8	17,2	2,0	64,4
1996	0,0	95,2	31,4	22,4	0,0	0,0	0,0	0,0	2,1	0,0	2,6	3,6	157,3
Média	15,3	23,1	23,2	11,7	1,4	1,2	0,5	0,7	0,7	1,7	3,9	7,3	90,9
D. P.	22,6	36,6	16,5	11,8	3,5	1,4	1,3	1,7	1,1	2,4	6,6	11,6	37,4
C. V. (%)	147,4	158,2	71,0	100,6	244,9	112,0	244,9	244,9	155,4	138,5	168,6	159,5	41,1
E. P. M.	9,2	14,9	6,7	4,8	1,4	0,6	0,5	0,7	0,5	1,0	2,7	4,7	15,3

Quadro 19 – Valores mensais, anuais e médios do índice de erosividade KE>25, em MJ ha⁻¹ ano⁻¹, da Estação Ilha dos Pombos, obtidos com base na metodologia para o cálculo da energia cinética proposta por FOSTER et al. (1981), com as respectivas medidas estatísticas de dispersão

Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set.	Out.	Nov.	Dez.	Total
1976	21,5	7,6	11,7	0,0	1,4	0,0	0,0	1,6	0,0	6,0	14,3	20,8	84,9
1977	31,7	0,0	5,2	6,0	4,4	0,0	0,0	0,0	0,0	10,6	5,1	10,6	73,7
1978	5,4	1,2	5,4	3,4	3,6	1,4	0,0	0,0	0,0	10,5	17,6	20,1	68,5
1979	0,0	28,5	16,2	8,1	0,0	0,0	0,0	8,6	0,0	3,8	13,6	22,5	101,4
1980	6,5	4,8	0,0	2,9	0,0	0,0	0,0	0,0	0,0	0,0	0,0	2,2	16,3
1981	2,6	3,0	6,8	1,1	0,0	0,0	0,0	0,0	11,0	1,5	8,1	11,4	45,4
1982	8,8	0,0	41,9	0,0	1,0	0,0	0,0	5,9	0,0	2,5	11,6	47,5	119,2
1983	43,3	19,9	28,5	8,2	3,7	0,0	0,0	0,0	1,5	4,7	1,6	12,7	124,2
1984	3,4	0,0	23,5	5,2	1,2	0,0	0,0	0,0	7,5	0,0	1,2	13,4	55,4
1985	25,3	10,3	12,9	4,3	0,0	4,3	0,0	5,8	12,6	16,6	0,0	24,1	116,2
1986	7,2	7,9	15,8	0,0	0,0	0,0	0,0	0,0	4,4	0,0	13,6	0,0	48,9
1988	0,0	9,7	0,0	0,0	4,8	2,4	0,0	0,0	1,2	0,0	0,0	9,9	28,0
1989	17,1	12,9	9,0	2,5	0,0	0,0	1,6	0,0	0,0	1,4	0,0	2,0	46,6
1990	16,4	32,2	0,0	0,0	0,0	0,0	0,0	0,0	2,8	2,8	7,0	12,5	73,6
1991	0,0	12,2	7,4	8,9	0,0	0,0	0,0	0,0	0,0	0,0	12,3	43,5	84,3
Média	12,6	10,0	12,3	3,4	1,3	0,5	0,1	1,5	2,7	4,0	7,1	16,9	72,5
D. P.	13,0	10,0	11,7	3,3	1,8	1,3	0,4	2,9	4,3	5,0	6,4	13,7	33,1
C. V. (%)	103,4	100,2	95,0	97,0	136,0	232,7	387,3	194,4	156,1	123,3	90,0	81,4	45,6
E. P. M.	3,4	2,6	3,0	0,8	0,5	0,3	0,1	0,7	1,1	1,3	1,6	3,5	8,5

Quadro 20 – Valores mensais, anuais e médios do índice de erosividade KE>25, em MJ ha⁻¹ ano⁻¹, da Estação Santa Cecília, obtidos com base na metodologia para o cálculo da energia cinética proposta por FOSTER et al. (1981), com as respectivas medidas estatísticas de dispersão

Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set.	Out.	Nov.	Dez.	Total
1963	10,7	8,2	5,1	10,5	0,0	0,0	0,0	0,0	0,0	0,0	11,2	5,3	50,9
1964	0,0	30,5	0,0	0,0	0,0	0,0	0,0	0,0	0,0	9,3	0,0	6,1	45,8
1973	37,0	8,9	3,3	7,7	0,0	0,0	0,0	2,1	0,0	2,3	1,1	7,1	69,4
1974	10,7	6,3	14,1	0,0	0,0	6,0	0,0	0,0	0,0	5,3	0,0	14,3	56,7
1975	7,6	13,5	0,0	2,0	3,3	0,0	0,0	0,0	0,0	6,6	14,0	11,5	58,5
1976	45,8	21,8	15,7	7,8	1,0	0,0	0,0	0,0	0,0	2,4	6,9	13,8	115,3
1982	15,1	1,9	10,9	0,0	0,0	0,0	1,3	0,0	0,0	1,0	12,9	16,6	59,7
1986	2,5	0,0	1,1	2,2	0,0	0,0	0,0	0,0	4,5	0,0	0,0	14,2	24,6
1988	16,7	15,4	5,1	2,5	4,8	0,0	0,0	0,0	0,0	6,9	1,2	19,3	71,8
1990	18,5	6,8	14,3	0,0	0,0	0,0	4,5	0,0	0,0	14,6	17,2	4,1	80,2
1991	12,4	17,4	22,4	5,2	0,0	4,6	0,0	0,0	0,0	2,8	8,3	42,7	115,7
1992	0,0	0,0	8,8	8,2	0,0	0,0	0,0	0,0	0,0	0,0	9,0	13,8	39,8
1993	7,1	9,2	12,0	3,2	0,0	0,0	0,0	0,0	0,0	0,0	2,5	3,8	37,8
1996	9,8	2,9	17,3	15,4	0,0	0,0	0,0	0,0	0,0	1,4	0,0	0,0	46,6
Média	13,8	10,2	9,3	4,6	0,6	0,8	0,4	0,2	0,3	3,8	6,0	12,3	62,3
D. P.	13,1	8,8	7,0	4,7	1,5	1,9	1,2	0,6	1,2	4,3	6,1	10,4	26,8
C. V. (%)	94,5	86,0	75,8	101,7	229,1	256,9	294,8	374,2	374,2	115,0	101,3	84,4	43,0
E. P. M.	3,5	2,3	1,9	1,3	0,4	0,5	0,3	0,2	0,3	1,2	1,6	2,8	7,2

Quadro 21 – Valores mensais, anuais e médios do índice de erosividade KE>25, em MJ ha⁻¹ ano⁻¹, da Estação Lajes, obtidos com base na metodologia para o cálculo da energia cinética proposta por FOSTER et al. (1981), com as respectivas medidas estatísticas de dispersão

Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set.	Out.	Nov.	Dez.	Total
1966	21,7	13,4	32,4	7,8	13,1	0,0	0,0	0,0	0,0	1,0	29,4	23,7	142,5
1967	110,0	14,2	38,2	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	8,3	170,7
1968	11,4	1,5	4,2	0,0	0,0	0,0	0,0	0,0	0,0	0,0	7,6	1,4	26,1
1969	17,5	0,0	3,9	7,3	0,0	0,0	0,0	0,0	5,0	6,8	13,6	9,5	63,7
1970	2,1	2,9	2,6	0,0	0,0	0,0	0,0	10,7	4,7	29,8	10,6	6,9	70,3
1971	12,9	11,5	0,0	0,0	1,0	0,0	3,9	0,0	4,7	14,2	13,8	10,0	72,1
1973	9,9	3,4	8,2	8,5	0,0	0,0	0,0	2,1	0,0	6,2	15,9	25,1	79,3
1974	7,1	28,5	5,8	3,9	1,8	1,7	0,0	0,0	0,0	10,6	11,9	20,5	91,8
1977	26,8	0,0	7,4	6,3	0,0	3,0	1,5	0,0	1,1	0,0	1,0	9,1	56,4
1978	1,3	18,0	6,3	4,1	0,0	1,7	1,6	0,0	0,0	2,9	4,4	11,2	51,3
1979	29,1	3,5	15,0	0,0	0,0	0,0	0,0	6,9	2,5	17,6	8,9	11,5	95,0
1980	14,9	8,3	10,1	4,9	0,0	0,0	0,0	0,0	0,0	2,1	4,7	21,5	66,5
1981	2,4	0,0	6,5	6,3	0,0	0,0	0,0	0,0	0,0	5,9	18,8	17,7	57,6
1982	24,1	12,3	10,6	0,0	0,0	2,7	2,5	1,1	0,0	8,3	6,5	5,6	73,7
1983	27,5	2,3	24,9	4,9	0,0	2,5	0,0	0,0	7,2	0,0	6,9	9,4	85,5
Média	20,8	8,4	10,8	3,5	1,1	0,6	0,7	1,5	1,3	7,5	10,5	13,0	79,8
D. P.	27,2	8,4	11,1	3,4	3,5	1,1	1,2	3,2	2,0	8,4	7,7	7,4	35,8
C. V. (%)	130,9	100,1	102,6	96,7	306,1	171,5	183,3	218,3		111,8	73,4	56,5	44,9
E. P. M.	7,0	2,2	2,9	0,9	0,9	0,3	0,3	0,8	0,5	2,2	2,0	1,9	9,2

52

Quadro 22 – Valores mensais, anuais e médios do índice de erosividade KE>25, em MJ ha⁻¹ ano⁻¹, da Estação Tocos, obtidos com base na metodologia para o cálculo da energia cinética proposta por FOSTER et al. (1981), com as respectivas medidas estatísticas de dispersão

Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set.	Out.	Nov.	Dez.	Total
1981	44,8	4,1	1,1	0,0	0,0	3,7	0,0	1,7	0,0	3,4	14,9	12,9	86,6
1982	1,6	12,5	5,1	0,0	0,0	2,3	0,0	0,0	2,8	16,9	6,8	24,7	72,8
1983	27,4	2,1	16,0	4,7	1,5	5,4	0,0	0,0	1,2	0,0	1,5	10,4	70,2
1984	13,3	3,2	3,7	17,7	8,0	0,0	0,0	0,0	2,2	0,0	4,0	34,5	86,5
1985	17,7	32,8	51,2	0,0	0,0	0,0	0,0	0,0	0,0	3,4	19,3	35,5	160,0
1986	8,1	28,9	9,0	1,7	3,3	0,0	0,0	0,0	0,0	0,0	13,2	49,5	113,7
1987	21,2	17,6	2,0	18,7	3,5	5,0	0,0	0,0	3,6	7,3	4,2	29,4	112,5
1988	37,5	57,3	14,9	1,6	2,5	0,0	0,0	0,0	0,0	10,1	5,5	9,2	138,7
1993	9,6	31,4	38,2	20,2	0,0	2,4	0,0	0,0	0,0	1,6	1,0	12,0	116,4
1994	35,0	0,0	38,7	0,0	0,0	0,0	0,0	0,0	0,0	0,0	3,8	58,4	135,8
1995	56,8	32,8	8,5	0,0	0,0	2,1	0,0	0,0	4,5	5,1	2,8	25,7	138,3
1996	22,2	33,7	20,6	0,0	0,0	0,0	0,0	0,0	5,0	3,0	8,5	17,1	110,1
1997	39,3	10,4	2,3	2,5	1,1	0,0	0,0	0,0	0,0	0,0	4,5	3,3	63,4
1998	63,7	29,5	4,6	0,0	0,0	0,0	1,4	0,0	7,2	3,9	3,7	13,0	126,9
1999	68,8	60,3	16,8	6,0	0,0	2,6	0,0	0,0	2,0	0,0	34,7	13,6	204,9
Média	31,1	23,8	15,5	4,9	1,3	1,6	0,1	0,1	1,9	3,6	8,6	23,3	115,8
D. P.	20,7	18,9	15,5	7,5	2,2	1,9	0,4	0,4	2,3	4,8	8,9	15,8	37,7
C. V. (%)	66,5	79,7	100,0	153,7	168,8	123,9	387,3	387,3	121,4	130,5	104,3	67,7	32,6
E. P. M.	5,3	4,9	4,0	1,9	0,6	0,5	0,1	0,1	0,6	1,2	2,3	4,1	9,7

Quadro 23 – Valores mensais, anuais e médios do índice de erosividade KE>25, em MJ ha⁻¹ ano⁻¹, da Estação Tanguá, obtidos com base na metodologia para o cálculo da energia cinética proposta por FOSTER et al. (1981), com as respectivas medidas estatísticas de dispersão

Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set.	Out.	Nov.	Dez.	Total
1980	6,4	4,4	0,0	3,0	4,5	0,0	0,0	0,0	0,0	0,0	1,1	13,7	33,0
1981	18,4	5,3	6,0	14,8	0,0	0,0	0,0	0,0	0,0	0,0	5,3	26,5	76,3
1982	10,7	5,6	10,2	1,2	1,7	0,0	4,9	1,3	0,0	14,0	5,6	1,6	56,8
1983	24,7	0,0	20,8	6,6	2,0	2,4	0,0	0,0	0,0	1,1	13,9	3,5	75,0
1984	3,0	0,0	13,1	6,3	13,5	0,0	0,0	0,0	0,0	0,0	0,0	1,2	37,1
1985	0,0	8,6	28,1	4,0	0,0	3,7	0,0	1,7	0,0	0,0	3,7	11,2	61,0
1986	19,5	29,9	11,4	1,5	0,0	0,0	0,0	0,0	1,3	1,1	3,3	18,6	86,5
1987	3,7	21,5	2,0	15,1	0,0	0,0	13,6	0,0	0,0	0,0	0,0	15,6	71,4
1988	9,3	57,7	0,0	1,8	0,0	0,0	0,0	0,0	0,0	8,4	6,7	14,5	98,4
1989	3,3	28,9	10,9	0,0	0,0	4,2	0,0	0,0	0,0	0,0	0,0	4,8	52,1
1990	2,4	12,0	11,4	32,5	0,0	0,0	4,1	0,0	0,0	1,4	9,5	0,0	73,2
1991	4,1	17,7	13,3	11,0	0,0	1,5	0,0	0,0	1,3	0,0	0,0	20,7	69,6
1992	17,1	5,5	0,0	12,5	0,0	0,0	0,0	0,0	1,7	3,3	15,6	0,0	55,7
1993	3,8	16,1	17,7	0,0	4,1	0,0	0,0	0,0	0,0	0,0	2,3	8,8	52,8
1994	4,7	1,0	8,1	1,7	4,4	3,4	0,0	0,0	0,0	0,0	1,0	8,1	32,4
1995	12,6	17,3	6,7	0,0	12,3	0,0	0,0	0,0	0,0	0,0	15,0	0,0	63,9
Média	9,0	14,5	10,0	7,0	2,7	1,0	1,4	0,2	0,3	1,8	5,2	9,3	62,2
D. P.	7,4	15,0	7,8	8,6	4,3	1,6	3,6	0,5	0,6	3,9	5,5	8,3	18,5
C. V. (%)	82,7	103,6	78,7	123,1	163,7	163,5	254,2	275,7	217,4	213,7	106,6	89,6	29,8
E. P. M.	1,9	3,7	2,0	2,2	1,1	0,4	0,9	0,1	0,1	1,0	1,4	2,1	4,6

Quadro 24 – Valores mensais, anuais e médios do índice de erosividade KE>25, em MJ ha⁻¹ ano⁻¹, da Estação Escola União, obtidos com base na metodologia para o cálculo da energia cinética proposta por FOSTER et al. (1981), com as respectivas medidas estatísticas de dispersão

Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set.	Out.	Nov.	Dez.	Total
1977	51,9	0,0	56,1	0,0	0,0	0,0	0,0	0,0	1,2	0,0	0,0	29,4	138,6
1978	34,0	26,8	3,7	10,5	2,1	0,0	0,0	0,0	0,0	0,0	10,9	12,9	101,0
1979	5,8	17,6	20,8	6,3	0,0	0,0	5,0	5,2	0,0	4,5	10,8	4,8	80,7
1980	29,5	13,5	0,0	12,2	0,0	8,1	2,3	0,0	0,0	0,0	0,0	31,0	96,6
1981	6,5	8,2	6,8	0,0	0,0	0,0	0,0	0,0	0,0	1,5	25,0	44,2	92,2
1982	22,0	19,2	13,4	3,1	0,0	1,4	1,7	5,2	0,0	5,0	15,0	50,6	136,6
1983	29,5	7,8	26,5	3,6	1,8	7,5	0,0	0,0	0,0	0,0	20,1	23,4	120,1
1984	6,1	3,9	1,8	8,1	2,7	0,0	0,0	0,0	0,0	0,0	0,0	11,4	33,9
1985	25,3	88,6	29,4	20,1	5,2	0,0	0,0	1,2	14,3	6,2	11,6	2,0	203,9
1986	23,1	17,0	27,3	3,7	0,0	0,0	0,0	0,0	6,1	2,5	2,0	42,7	124,3
1987	29,6	7,6	16,1	1,0	0,0	0,0	0,0	0,0	0,0	5,4	0,0	12,9	72,6
1988	54,2	88,3	1,1	26,0	5,3	3,2	2,3	0,0	0,0	4,4	6,0	63,1	253,9
1989	27,4	39,6	21,6	12,9	9,4	6,4	2,3	0,0	0,0	0,0	9,3	0,0	128,8
1990	5,0	26,7	19,5	5,9	12,7	0,0	0,0	0,0	0,0	0,0	37,2	2,1	109,1
1991	2,7	14,5	22,5	14,0	0,0	1,2	0,0	0,0	2,8	0,0	3,4	25,5	86,6
1992	23,1	10,3	2,4	2,8	0,0	0,0	2,5	1,9	2,8	4,2	16,6	11,9	78,5
1993	17,3	30,8	33,2	8,1	0,0	0,0	0,0	0,0	0,0	0,0	15,8	14,5	119,7
1994	12,5	23,0	46,2	3,7	1,1	4,0	0,0	0,0	0,0	2,6	7,2	44,8	145,1
1995	32,5	29,4	16,6	3,0	24,0	0,0	0,0	0,0	0,0	4,8			110,3
Média	23,0	24,9	19,2	7,6	3,4	1,7	0,8	0,7	1,4	2,2	10,6	23,7	119,3
D. P.	14,7	24,6	15,4	6,9	6,1	2,8	1,4	1,7	3,5	2,3	10,0	18,9	48,4
C. V. (%)	63,9	98,9	80,0	91,0	181,4	166,7	167,1	233,6	244,1	108,6	94,3	79,6	40,5
E. P. M.	3,4	5,6	3,5	1,6	1,4	0,6	0,3	0,4	0,8	0,5	2,4	4,5	11,1

Quadro 25 – Valores mensais, anuais e médios do índice de erosividade KE>25, em MJ ha⁻¹ ano⁻¹, da Estação Cachoeiras de Macacu, obtidos com base na metodologia para o cálculo da energia cinética proposta por FOSTER et al. (1981), com as respectivas medidas estatísticas de dispersão

Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set.	Out.	Nov.	Dez.	Total
1979	27,9	5,2	8,8	15,7	2,6	0,0	11,7	2,9	0,0	11,5	17,5	34,3	138,0
1980	0,0	17,8	8,2	14,2	2,1	1,1	0,0	0,0	0,0	0,0	13,2	80,1	136,6
1981	2,6	14,3	11,6	12,8	1,5	0,0	0,0	0,0	0,0	0,0	26,7	42,3	112,0
1982	7,2	22,7	2,7	1,6	0,0	0,0	0,0	0,0	0,0	1,2	0,0	3,7	39,0
1983	5,3	15,5	7,1	6,1	0,0	4,9	0,0	0,0	1,3	1,2	12,5	17,4	71,4
1984	11,7	3,7	7,5	14,0	0,0	0,0	0,0	0,0	0,0	0,0	2,7	8,4	48,0
1985	23,1	26,9	21,6	11,6	0,0	0,0	0,0	0,0	1,1	2,5	8,7	3,7	99,2
1986	25,1	3,8	24,3	12,6	1,0	0,0	0,0	0,0	1,1	6,4	5,4	44,3	123,9
1987	23,6	11,2	12,3	6,8	2,5	0,0	0,0	0,0	0,0	2,4	1,0	29,6	89,4
1988	15,2	31,9	6,3	2,8	7,2	0,0	0,0	0,0	0,0	5,0	2,7	12,2	83,2
1989	22,1	19,0	11,7	5,2	0,0	1,0	1,2	0,0	0,0	0,0	0,0	4,4	64,6
1990	0,0	14,8	24,4	26,9	3,5	0,0	0,0	0,0	0,0	15,5	22,6	3,7	111,5
1991	2,6	35,8	16,2	8,0	0,0	3,2	0,0	0,0	1,1	1,1	0,0	20,1	88,1
1992	10,9	12,6	7,9	28,0	2,5	1,5	0,0	0,0	2,9	14,3	11,9	9,5	102,1
1993	13,5	35,1	26,4	0,0	4,3	0,0	0,0	0,0	3,3	8,3	5,9	8,9	105,6
Média	12,7	18,0	13,1	11,1	1,8	0,8	0,9	0,2	0,7	4,6	8,7	21,5	94,2
D. P.	9,7	10,6	7,6	8,2	2,1	1,5	3,0	0,7	1,1	5,4	8,5	21,4	29,5
C. V. (%)	76,4	58,9	57,9	74,3	113,7	185,5	349,7	387,3	152,2	116,8	97,9	99,8	31,3
E. P. M.	2,5	2,7	2,0	2,1	0,5	0,4	0,8	0,2	0,3	1,4	2,2	5,5	7,6

Quadro 26 – Valores mensais, anuais e médios do índice de erosividade KE>25, em MJ ha⁻¹ ano⁻¹, da Estação Posto Garrafão, obtidos com base na metodologia para o cálculo da energia cinética proposta por FOSTER et al. (1981), com as respectivas medidas estatísticas de dispersão

Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set.	Out.	Nov.	Dez.	Total
1980	6,6	5,0	19,9	14,2	3,6	1,3	1,1	3,4	0,0	2,5	2,6	43,7	104,1
1981	50,8	46,8	70,6	17,1	0,0	0,0	1,0	0,0	1,8	0,0	11,4	76,4	276,0
1982	12,4	3,6	49,0	12,9	0,0	19,8	0,0	6,2	0,0	0,0	3,0	52,2	159,1
1983	20,5	53,1	55,3	4,5	4,7	2,5	0,0	0,0	2,3	3,8	10,9	18,0	175,5
1984	19,7	10,8	23,1	4,4	17,6	0,0	0,0	1,7	0,0	3,4	10,5	15,1	106,4
1985	29,3	20,5	18,3	13,6	1,0	0,0	0,0	0,0	0,0	6,0	19,3	0,0	108,1
1986	6,3	43,4	23,6	15,8	1,2	0,0	18,0	0,0	2,1	3,1	8,7	52,4	174,6
1987	37,9	11,2	25,2	8,6	1,8	1,5	0,0	0,0	0,0	2,1	46,3	18,6	153,2
1988	15,4	124,5	6,9	23,1	13,2	0,0	0,0	0,0	0,0	10,3	24,5	50,4	268,2
1989	20,6	44,3	83,9	1,2	3,1	8,3	2,0	0,0	0,0	1,1	0,0	10,5	175,1
1990	9,9	48,0	8,0	34,0	3,1	0,0	0,0	0,0	0,0	12,7	48,4	30,2	194,4
1991	90,8	38,2	24,0	20,4	4,7	2,3	0,0	0,0	7,1	2,5	10,2	46,3	246,3
1992	15,9	1,6	28,5	9,3	0,0	0,0	0,0	0,0	1,3	4,2	14,0	8,2	83,0
1993	29,4	28,8	68,6	6,6	1,8	0,0	0,0	0,0	6,3	3,6	25,2	5,0	175,2
1994	0,0	9,6	62,9	18,1	5,4	0,0	0,0	0,0	0,0	20,3	31,3	39,7	187,3
1995	30,1	22,4	19,1	0,0	3,6	4,6	0,0	0,0	0,0	2,1	20,5	60,6	163,0
Média	24,7	32,0	36,7	12,7	4,0	2,5	1,4	0,7	1,3	4,9	17,9	33,0	171,8
D. P.	21,9	30,4	24,4	8,9	4,8	5,1	4,5	1,7	2,3	5,3	14,4	22,8	56,5
C. V. (%)	88,4	95,1	66,5	69,6	119,0	204,2	322,3	244,6	173,4	109,9	80,2	69,1	32,9
E. P. M.	5,5	7,6	6,1	2,2	1,2	1,3	1,1	0,4	0,6	1,3	3,6	5,7	14,1

Quadro 27 – Valores mensais, anuais e médios do índice de erosividade KE>25, em MJ ha⁻¹ ano⁻¹, da Estação Rio Mole, obtidos com base na metodologia para o cálculo da energia cinética proposta por FOSTER et al. (1981), com as respectivas medidas estatísticas de dispersão

Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set.	Out.	Nov.	Dez.	Total
1980	13,1	0,0	7,8	0,0	2,5	2,6	0,0	1,4	0,0	2,9	1,2	9,2	40,8
1981	2,9	2,6	2,2	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	17,8	25,5
1982	1,9	0,0	36,1	7,3	0,0	0,0	5,1	0,0	0,0	0,0	0,0	13,0	63,4
1983	1,2	3,5	13,9	5,1	3,6	1,3	0,0	0,0	0,0	0,0	7,8	39,6	76,0
1984	6,0	4,7	0,0	0,0	5,2	0,0	0,0	0,0	0,0	1,1	0,0	1,5	18,5
1985	6,4	7,4	12,2	4,0	0,0	0,0	0,0	0,0	0,0	5,3	0,0	11,3	46,6
1986	7,6	38,2	4,1	1,3	5,6	0,0	7,5	0,0	2,0	0,0	2,4	31,3	100,0
1987	3,4	8,8	1,2	24,5	0,0	28,5	0,0	0,0	0,0	0,0	2,1	4,9	73,4
1988	5,2	26,4	0,0	16,5	6,3	12,2	7,0	0,0	0,0	4,7	19,5	10,3	108,1
1989	10,3	20,7	2,3	11,2	2,6	16,0	2,8	0,0	2,0	1,2	0,0	0,0	69,3
1990	0,0	9,0	17,5	49,2	17,7	0,0	2,4	0,0	0,0	5,0	22,2	0,0	122,9
1991	4,9	3,5	24,8	3,2	1,0	0,0	2,1	0,0	0,0	0,0	0,0	1,5	40,9
1992	0,0	2,1	2,3	15,4	0,0	0,0	3,8	1,1	0,0	5,2	1,7	0,0	31,5
1993	3,8	15,3	4,5	3,2	7,6	0,0	2,5	1,5	1,4	3,4	0,0	2,4	45,7
1994	1,9	0,0	12,2	11,0	1,1	20,5	2,4	0,0	0,0	0,0	9,3	2,7	61,1
Média	4,6	9,5	9,4	10,1	3,6	5,4	2,4	0,3	0,4	1,9	4,4	9,7	61,6
D. P.	3,7	11,1	10,4	13,0	4,7	9,3	2,5	0,6	0,8	2,2	7,3	11,9	30,7
C. V. (%)	81,5	117,7	110,1	128,2	132,3	171,7	107,0	209,2	210,2	115,6	164,8	122,7	49,9
E. P. M.	1,0	2,9	2,7	3,4	1,2	2,4	0,7	0,1	0,2	0,6	1,9	3,1	7,9

Quadro 28 – Valores mensais, anuais e médios do índice de erosividade KE>25, em MJ ha⁻¹ ano⁻¹, da Estação Eletrobrás, obtidos com base na metodologia para o cálculo da energia cinética proposta por FOSTER et al. (1981), com as respectivas medidas estatísticas de dispersão

Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set.	Out.	Nov.	Dez.	Total
1979	16,7	3,4	2,4	4,8	0,0	0,0	0,0	4,6	0,0	0,0	0,0	19,5	51,3
1980	12,2	0,0	2,3	3,7	0,0	1,2	1,2	0,0	0,0	8,7	13,1	14,1	56,4
1981	14,7	1,2	8,7	6,9	0,0	10,4	1,7	4,5	0,0	0,0	10,3	30,3	88,6
1982	1,2	0,0	1,0	1,0	0,0	0,0	0,0	0,0	0,0	5,1	5,1	2,9	16,3
1983	0,0	0,0	13,8	2,4	1,9	2,1	0,0	0,0	1,6	0,0	11,9	23,4	57,2
1984	10,4	0,0	5,9	9,0	9,0	0,0	0,0	2,2	2,3	0,0	0,0	0,0	38,8
1985	19,2	12,4	14,4	8,3	0,0	2,6	0,0	1,3	2,7	4,7	2,4	15,7	83,7
1986	0,0	28,5	12,8	2,4	0,0	0,0	3,0	0,0	0,0	7,9	0,0	5,2	59,8
1987	6,0	8,3	0,0	15,1	1,6	1,6	0,0	0,0	1,5	1,2	0,0	9,5	44,8
1988	4,8	42,2	9,6	13,6	1,8	1,1	1,3	0,0	0,0	0,0	4,9	1,6	81,1
1989	4,4	17,9	0,0	2,0	0,0	3,9	0,0	0,0	0,0	0,0	7,3	2,4	37,9
1990	0,0	2,2	0,0	14,9	9,6	0,0	0,0	0,0	0,0	10,4	9,6	0,0	46,7
1991	4,4	13,3	2,3	2,5	1,1	0,0	2,4	0,0	0,0	0,0	1,1	16,8	43,9
1992	25,0	0,0	3,6	1,6	0,0	0,0	0,0	4,6	2,6	2,3	6,4	0,0	46,2
1993	0,0	0,0	16,1	6,0	0,0	0,0	0,0	0,0	0,0	0,0	5,9	15,8	43,9
1994	12,8	1,4	10,0	0,0	1,5	7,1	3,3	0,0	0,0	0,0	0,0	3,1	39,2
1995	7,7	3,5	0,0	0,0	3,7	0,0	0,0	0,0	0,0	1,6	5,8	10,8	33,1
Média	8,2	7,9	6,1	5,5	1,8	1,8	0,8	1,0	0,6	2,5	4,9	10,1	51,1
D. P.	7,6	12,0	5,8	5,0	3,0	2,9	1,2	1,8	1,0	3,5	4,5	9,2	18,9
C. V. (%)	92,6	151,4	95,2	90,7	169,9	165,0	153,8	177,2	165,7	143,5	90,4	91,7	36,9
E. P. M.	1,8	2,9	1,4	1,2	0,7	0,7	0,3	0,4	0,3	0,9	1,1	2,2	4,6

Quadro 29 – Valores mensais, anuais e médios do índice de erosividade KE>25, em MJ ha⁻¹ ano⁻¹, da Estação Capela Mayrink, obtidos com base na metodologia para o cálculo da energia cinética proposta por FOSTER et al. (1981), com as respectivas medidas estatísticas de dispersão

Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set.	Out.	Nov.	Dez.	Total
1980	9,5	2,7	3,7	2,4	0,0	4,8	0,0	0,0	0,0	0,0	4,3	7,7	35,1
1981	12,9	0,0	23,7	6,5	13,0	0,0	2,2	6,6	0,0	0,0	14,8	39,9	119,6
1982	2,7	31,1	0,0	11,2	0,0	0,0	1,3	2,6	0,0	10,9	7,8	4,7	72,1
1983	17,0	4,1	38,7	4,2	3,1	4,6	0,0	0,0	0,0	1,5	17,6	14,3	105,1
1984	0,0	0,0	1,2	11,7	2,9	0,0	0,0	0,0	0,0	0,0	0,0	0,0	15,8
1985	8,0	6,7	26,3	31,9	0,0	2,5	0,0	0,0	0,0	0,0	0,0	8,3	83,7
1986	0,0	13,8	31,4	9,5	6,1	0,0	13,7	0,0	0,0	0,0	8,0	1,8	84,4
1987	21,0	22,1	4,3	12,4	4,2	0,0	0,0	0,0	0,0	0,0	0,0	4,8	68,8
1988	9,0	112,7	2,1	8,9	6,5	0,0	0,0	0,0	0,0	27,2	1,0	3,8	171,3
1989	11,4	4,6	1,4	0,0	5,0	15,2	4,8	0,0	0,0	0,0	6,4	5,5	54,3
1990	1,8	0,0	8,4	62,0	11,1	0,0	10,1	0,0	2,2	14,6	2,0	12,8	124,9
1991	3,1	12,3	7,8	12,6	0,0	11,4	0,0	0,0	0,0	0,0	5,3	16,7	69,2
1992	26,6	4,1	7,5	9,1	0,0	0,0	1,0	3,0	1,1	1,4	8,7	0,0	62,4
1993	7,7	16,0	41,5	21,2	5,3	0,0	0,0	0,0	0,0	2,8	6,5	12,7	113,7
1994	0,0	7,7	23,1	2,7	4,1	24,9	4,0	0,0	0,0	0,0	0,0	1,1	67,7
1995	7,0	6,4	9,3	0,0	0,0	0,0	0,0	18,5	0,0	1,6	4,9	0,0	47,8
Média	8,6	15,3	14,4	12,9	3,8	4,0	2,3	1,9	0,2	3,7	5,5	8,4	81,0
D. P.	7,8	27,4	14,1	15,4	4,0	7,2	4,1	4,8	0,6	7,6	5,2	10,0	38,5
C. V. (%)	90,7	179,1	98,0	119,3	104,9	182,1	176,4	249,1	291,4	202,4	96,1	119,3	47,6
E. P. M.	2,0	6,8	3,5	3,8	1,0	1,8	1,0	1,2	0,1	1,9	1,3	2,5	9,6
	Índices de I	Erosividade											
--------------------------	---------------	---											
Estação	$(EI_{30})_1$	$(EI_{30})_2$											
	MJ mm ha	$^{-1}$ h ⁻¹ ano ⁻¹											
Posto Garrafão	15.806	16.225											
Escola União	10.235	10.502											
Vila Mambucaba	10.140	10.485											
Capela Mayrink	9.331	9.705											
Tocos	9.031	9.267											
Cachoeiras de Macacu	7.961	8.233											
Santa Isabel do R. Preto	6.971	7.188											
Lajes	6.696	6.908											
Ilha dos Pombos	5.653	5.819											
Rio Mole	5.448	5.626											
Tanguá	5.289	5.469											
Santa Cecília	4.985	5.140											
Eletrobrás	4.439	4.626											
Manuel Duarte	4.118	4.268											

Quadro 30 – Valores anuais médios do índice de erosividade EI₃₀ das diferentes localidades do Estado do Rio de Janeiro

Quadro 31 – Valores anuais médios do índice de erosividade KE>25 das diferentes localidades do Estado do Rio de Janeiro

	Índices de 1	Erosividade
Estação	(KE>25) ₁	(KE>25) ₂
	MJ ha	$^{-1}$ ano ⁻¹
Posto Garrafão	171,8	170,2
Escola União	119,3	118,1
Tocos	115,8	114,8
Cachoeiras de Macacu	94,2	94,0
Vila Mambucaba	90,9	90,3
Santa Isabel do R. Preto	88,6	87,9
Capela Mayrink	81,0	80,2
Lajes	80,2	79,4
Ilha dos Pombos	72,5	71,8
Santa Cecília	62,3	61,8
Tanguá	62,2	61,5
Rio Mole	61,6	61,0
Eletrobrás	51,1	50,6
Manuel Duarte	42,1	41,7

Pode-se notar, nos dados apresentados nesses quadros, que existem apenas pequenas diferenças nos resultados de erosividade quando se analisam as duas equações de energia cinética empregadas nos cálculos. Resultados semelhantes foram verificados por McGREGOR et al. (1995), que ressaltaram que a equação de WAGNER e MASSAMBANI (1988) geraria, provavelmente, melhores resultados se no seu desenvolvimento tivessem sido utilizados dados provenientes de um maior número de chuvas. MARQUES et al. (1997) também verificaram a mesma situação apresentada neste trabalho.

Fazendo a comparação entre os índices de erosividade calculados por meio da equação de energia cinética sugerida por FOSTER et al. (1981) e daquela proposta por WAGNER e MASSAMBANI (1988), pode-se observar que, para o índice EI₃₀, os valores encontrados utilizando a equação de energia cinética recomendada por aqueles autores foram, em média, 3,15% menores que os obtidos através da equação de energia cinética proposta por estes últimos. Para o índice KE>25, houve uma inversão, ou seja, os valores encontrados empregando a equação de energia cinética sugerida por FOSTER et al. (1981) passaram a ser, em média, 0,88% maiores que os obtidos utilizando a equação de energia cinética proposta por WAGNER e MASSAMBANI (1988). A explicação para isso foi que a equação sugerida por aqueles pesquisadores forneceu valores maiores de energia cinética que a proposta por estes dois quando a intensidade da chuva foi superior a 31 mm h^{-1} . Por esse motivo, os valores do índice KE>25, que levam em conta as intensidades das chuvas superiores a 25 mm h^{-1} e foram obtidos por meio da equação sugerida por FOSTER et al. (1981), mostraram-se sempre superiores ou iguais aos do índice KE>25, obtidos por intermédio da equação proposta por WAGNER e MASSAMBANI (1988). O mesmo não ocorre com o El₃₀ e por isso os valores obtidos por meio da equação de energia cinética sugerida por FOSTER et al. (1981) foram menores que os encontrados utilizando a equação de energia cinética proposta por WAGNER e MASSAMBANI (1988). Essa constatação também foi verificada por MARQUES et al. (1988).

Em virtude da grande semelhança, ou seja, da pequena variação percentual média (3,15 e 0,88%) entre os valores dos índices de erosividade EI₃₀ e KE>25,

respectivamente, obtidos pelas diferentes equações para o cálculo da energia cinética, somente foram discutidos os resultados alcançados com base na equação sugerida por FOSTER et al. (1981).

Quanto ao índice de erosividade EI_{30} , verificou-se que a Estação Posto Garrafão apresentou erosividade das chuvas 283,8% maior que a Estação Manuel Duarte. Quando essa comparação é feita por meio do índice KE>25, tal percentual chega a 308,1%.

Ao analisar, entretanto, a série histórica de dados utilizada na obtenção dos índices de erosividade, verificou-se que Posto Garrafão apresentou dados de 1980 a 1995 (16 anos) e Manuel Duarte, apenas do período de 1989 a 1994 (5 anos). Em razão desse fato, resolveu-se também determinar os índices de erosividade somente do período de dados comuns entre as duas estações, ou seja, de 1989 a 1994, com a obtenção de valores de EI_{30} e KE>25, no Posto Garrafão, de 18.155 MJ mm ha⁻¹ h⁻¹ ano⁻¹ e 195,7 MJ ha⁻¹ ano⁻¹ e de 4.118 MJ mm ha⁻¹ h⁻¹ ano⁻¹ e 42,1 MJ ha⁻¹ ano⁻¹ em Manuel Duarte, respectivamente.

Observou-se, portanto, que a diferença percentual entre os locais com maior e menor erosividades aumentou ainda mais, atingindo 340,9% quando se considerou o EI₃₀ e 364,8% para o KE>25. Essa grande variação de erosividade nos diferentes locais estudados pode ser explicada, em parte, pelo fator orográfico. Enquanto a Estação Manuel Duarte encontrava-se na região Centro-Sul do Estado do Rio de Janeiro, a Posto Garrafão ficava bem na crista da região serrana. De acordo com estudo de chuvas intensas feito pela CPRM (2000), nenhuma outra serra do território nacional exerceu tanta influência no aumento das precipitações quanto as serras do Mar e da Mantiqueira, localizadas naquele Estado. Vale ressaltar também que, analisando a literatura disponível sobre o assunto, no Brasil apenas a cidade de Manaus (AM), com EI₃₀ de 14.129 MJ mm ha⁻¹ h⁻¹ ano⁻¹, apresentou valores tão altos de erosividade como os observados em Posto Garrafão.

Os índices de erosividade de Posto Garrafão foram, em média, 16,7 e 11,0% maiores que a soma dos índices de erosividade das três localidades com menores potenciais erosivos avaliados pelos índices EI_{30} e KE>25, respectivamente.

Levando em conta a magnitude do índice de erosividade anual médio, podem-se separar quatro grupos, sendo a amplitude entre as estações em torno de 2.000 MJ mm ha⁻¹ h⁻¹ ano⁻¹ para o EI₃₀ e 20 MJ ha⁻¹ ano⁻¹ para KE>25.

Para o índice de erosividade EI_{30} , o primeiro grupo compreendeu apenas a Estação Posto Garrafão, com valor médio do índice de erosividade de 15.806 MJ mm ha⁻¹ h⁻¹ ano⁻¹. O segundo grupo foi composto pelas Estações Escola União, Vila Mambucaba, Capela Mayrink e Tocos, com valores médios variando de 9.031 a 10.235 MJ mm ha⁻¹ h⁻¹ ano⁻¹. O terceiro grupo abrangeu Cachoeiras de Macacu, Santa Isabel do Rio Preto e Lajes, com o EI_{30} oscilando 6.696 a 7.961 MJ mm ha⁻¹ h⁻¹ ano⁻¹, enquanto o quarto grupo foi tomado pelas estações Ilha dos Pombos, Rio Mole, Tanguá, Santa Cecília, Eletrobrás e Manuel Duarte, com valor médio variando de 4.118 a 5.653 MJ mm ha⁻¹ h⁻¹ ano⁻¹.

Para o índice de erosividade KE>25, o primeiro grupo também compreendeu apenas a Estação Posto Garrafão, com valor médio do índice de erosividade de 171,8 MJ ha⁻¹ ano⁻¹. Escola União e Tocos formaram o segundo grupo, com valores médios de 119,3 e 115,8 MJ ha⁻¹ ano⁻¹, respectivamente. O terceiro grupo foi composto por Cachoeiras de Macacu, Vila Mambucaba, Santa Isabel do Rio Preto, Capela Mayrink, Lajes e Ilha dos Pombos, com valores variando de 72,5 a 94,2 MJ ha⁻¹ ano⁻¹. Já o quarto grupo foi constituído por Santa Cecília, Tanguá, Rio Mole, Eletrobrás e Manuel Duarte, com KE>25 variando de 42,1 a 62,3 MJ ha⁻¹ ano⁻¹. Notou-se que a diferenciação dos grupos para EI₃₀. É importante observar que os grupos não tiveram nenhuma relação com a localização das estações.

No Quadro 32 estão apresentados, em ordem decrescente de percentual de ocorrência, o número médio de chuvas por ano, o número médio de chuvas erosivas por ano e a percentagem de chuvas erosivas em relação ao total de chuvas, além da precipitação total anual, precipitação considerada erosiva e percentagem de precipitação erosiva com relação ao total anual de cada uma das

Quadro 32 – Número médio de chuvas por ano, número médio de chuvas erosivas por ano, percentagem de chuvas erosivas em relação ao total de chuvas, precipitação total anual, precipitação considerada erosiva, percentagem de precipitação erosiva em relação ao total anual e as medidas estatísticas relacionadas com o número de chuvas e a precipitação

Estação	Ν	úmero de Chuv	as	Prec	eipitação Média	
	Ano	Erosiva	(%)	Total	Erosiva	(%)
		n°			Mm	
Vila Mambucaba	122	54	44,3	2.033,9	1.764,0	86,7
Posto Garrafão	179	75	41,9	3.006,0	2.478,3	82,4
Tocos	128	49	38,5	1.465,6	1.356,8	92,6
Santa Isabel do R. Preto	124	47	38,1	1.550,1	1.259,7	81,3
Manuel Duarte	93	35	38,0	1.027,9	810,8	78,9
Ilha dos Pombos	93	34	36,8	1.013,0	877,5	86,6
Capela Mayrink	143	52	36,6	2.170,3	1.864,8	85,9
Escola União	147	51	34,8	1.859,5	1.497,5	80,5
Cachoeiras de Macacu	158	53	33,5	1.914,9	1.467,2	76,6
Eletrobrás	116	35	30,6	1.280,0	964,4	75,3
Tanguá	131	39	29,4	1.387,3	1.015,3	73,2
Rio Mole	122	34	27,6	1.252,3	953,8	76,2
Lajes	149	40	27,1	1.450,7	1.045,6	72,1
Santa Cecília	138	33	24,0	1.486,2	825,1	55,5
Média	132	45	34	1.635,5	1.298,6	78,8
D. P.	23	12		528,8	481,7	
C. V. (%)	18	26		32,3	37,1	
E. P. M.	6	3		132,2	120,4	

14 estações pluviográficas utilizadas neste estudo. No Quadro 32 são apresentadas, também, as medidas estatísticas relacionadas com o número de chuvas e a precipitação.

Observando os dados do Quadro 32, verifica-se que o coeficiente de variação do número de chuvas total anual médio apresentou valores menores (18%) que o coeficiente de variação do número de chuvas erosivas anual médio (26%). O mesmo vale para a precipitação, sendo o coeficiente de variação total (32,3%) inferior ao das chuvas erosivas (37,1%).

O maior número absoluto anual médio de chuvas erosivas foi o da localidade de Posto Garrafão, com 75 chuvas, correspondendo a 41,9% do número anual médio total. Apesar disso, Posto Garrafão não foi a estação com o maior percentual relativo, pois a Estação de Vila Mambucaba, com 44,3%, foi a que apresentou a maior percentagem de chuvas erosivas com relação ao número total de chuvas.

Posto Garrafão, estação com maior total anual médio precipitado (3.006,0 mm), possuía um percentual relativo de precipitações erosivas de 82,4%, percentual esse inferior ao das Estações Tocos, Vila Mambucaba, Ilha dos Pombos e Capela Mayrink, cujos percentuais foram de 92,6; 86,7; 86,6; e 85,9%, respectivamente.

Outra constatação foi de que a precipitação anual média erosiva da Estação Santa Cecília (825,1 mm), que apresentou o menor percentual de precipitações erosivas, foi três vezes menor que a da Estação Posto Garrafão, com 2.478,3 mm. Comparando as precipitações totais anuais médias, essa relação passa a ser duas vezes menor nessas estações, ou seja, 1.486,2 e 3.006,0 mm, respectivamente.

4.4. Estimativa dos índices de erosividades mensais médios a partir de dados pluviométricos

Nos Quadros 33 e 34 são apresentadas as equações de regressão ajustadas para a estimativa dos índices de erosividade EI_{30} e KE>25, respectivamente, a partir de dados pluviométricos. Todas as equações foram significativas em nível

Estação	p (mm)	R ²	Rc (mm)	R^2
Manuel Duarte	EI ₃₀ =4,3736p-42,895	0,89	EI ₃₀ =20,704Rc+112,54	0,82
Santa Isabel do Rio Preto	EI ₃₀ =4,8228p-24,524	0,90	EI ₃₀ =27,744Rc+194,08	0,82
Vila Mambucaba	EI ₃₀ =8,5015p-549,220	0,81	EI ₃₀ =44,611Rc+73,205	0,84
Ilha dos Pombos	EI ₃₀ =5,6957p-9,7418	0,86	EI ₃₀ =21,003Rc+223,87	0,72
Santa Cecília	EI ₃₀ =4,4383p-134,290	0,94	EI ₃₀ =24,530Rc+50,359	0,96
Lajes	EI ₃₀ =4,6235p-143,580	0,88	EI ₃₀ =22,691Rc+95,401	0,82
Tocos	EI ₃₀ =8,2444p-256,930	0,99	EI ₃₀ =38,483Rc+118,71	0,98
Tanguá	EI ₃₀ =6,2127p-277,440	0,85	EI ₃₀ =35,134Rc+38,484	0,81
Escola União	EI ₃₀ =8,9721p-537,380	0,91	EI ₃₀ =47,679Rc+64,585	0,89
Cachoeiras de Macacu	EI ₃₀ =6,9439p-444,620	0,92	EI ₃₀ =37,899Rc+39,859	0,91
Posto Garrafão	EI ₃₀ =8,0101p-689,410	0,72	EI ₃₀ =46,373Rc+146,28	0,70
Rio Mole	EI ₃₀ =8,2939p-411,500	0,65	EI ₃₀ =50,017Rc-13,364	0,65
Eletrobrás	EI ₃₀ =6,2822p-300,130	0,77	EI ₃₀ =37,764Rc+3,886	0,79
Capela Mayrink	EI ₃₀ =9,4876p-938,280	0,41	EI ₃₀ =53,311Rc-76,268	0,40

Quadro 33 – Equações de regressão ajustadas entre o índice de erosividade médio mensal EI₃₀ (MJ mm ha⁻¹ h⁻¹ ano⁻¹) e a precipitação média mensal (p) ou o coeficiente de chuva (Rc)

Estação	p (mm)	R^2	Rc (mm)	R ²
Manuel Duarte	KE>25=0,0392p-0,0984	0,72	KE>25=0,1802Rc+1,3597	0,62
Santa Isabel do Rio Preto	KE>25=0,0641p-0,6583	0,87	KE>25=0,3322Rc+2,1914	0,83
Vila Mambucaba	KE>25=0,0824p-5,9329	0,70	KE>25=0,4368Rc+0,0210	0,74
Ilha dos Pombos	KE>25=0,0701p+0,1173	0,82	KE>25=0,2577Rc+3,0054	0,68
Santa Cecília	KE>25=0,0567p-1,8216	0,92	KE>25=0,3143Rc+0,5190	0,94
Lajes	KE>25=0,0596p-2,0059	0,88	KE>25=0,2944Rc+1,0443	0,83
Tocos	KE>25=0,1076p-3,5300	0,97	KE>25=0,5045Rc+1,3395	0,97
Tanguá	KE>25=0,0800p-4,0649	0,80	KE>25=0,4551Rc-0,0268	0,77
Escola União	KE>25=0,1103p-7,1484	0,90	KE>25=0,5862Rc+0,2510	0,88
Cachoeiras de Macacu	KE>25=0,0857p-5,8327	0,88	KE>25=0,4628Rc+0,2337	0,86
Posto Garrafão	KE>25=0,0969p-9,9489	0,69	KE>25=0,5683Rc-0,0289	0,69
Rio Mole	KE>25=0,0973p-5,0241	0,61	KE>25=0,5852Rc-0,3366	0,61
Eletrobrás	KE>25=0,0856p-4,8745	0,76	KE>25=0,5167Rc-0,7488	0,79
Capela Mayrink	KE>25=0,1086p-12,8880	0,39	KE>25=0,6324Rc-3,0142	0,38

Quadro 34 – Equações de regressão ajustadas entre o índice de erosividade médio mensal KE>25 (MJ ha⁻¹ ano⁻¹) e a precipitação média mensal (p) ou o coeficiente de chuva (Rc)

de 1% de probabilidade, pelo teste F, e os coeficientes de determinação (R^2) variaram de 0,61 a 0,99. A exceção foi a Estação Capela Mayrink, que apresentou coeficientes de determinação em torno de 0,40.

Quando se usou o coeficiente de chuva (Rc) em vez da precipitação média mensal (p) para estimar a erosividade, não houve aumento significativo no valor do coeficiente de determinação. Portanto, desejando estimar a erosividade das chuvas nas regiões estudadas, pode-se simplesmente empregar a precipitação média mensal. Devido aos maiores coeficientes de determinação encontrados, é possível dizer que o EI₃₀ poderá ser estimado com mais segurança que o KE>25. Os dados de precipitação mensal média e os coeficientes de chuva, utilizados no ajuste das equações para cada uma das 14 estações pluviográficas, estão apresentados no Apêndice B.

4.5. Distribuição percentual mensal dos índices de erosividade, precipitação e coeficiente de chuva

Nas Figuras 3 a 16 são mostrados os percentuais mensais de precipitação, os índices de erosividade EI_{30} e KE>25 e o coeficiente de chuva de cada uma das 14 estações pluviográficas analisadas. Os dados utilizados para a elaboração dessas figuras encontram-se no Apêndice B. Nelas, verifica-se que o percentual de precipitação supera o dos índices de erosividade, em diferentes meses, nas diversas localidades estudadas. De certa forma, o período em que isso mais ocorreu foi o que envolveu os meses de maio a setembro. O único mês em que não se constatou superação da precipitação em relação aos índices de erosividade foi o de março. Das 14 localidades, em nenhuma delas os índices de erosividade foi relacionada apenas com o valor total anual, e os índices de erosividade levaram em conta a intensidade de precipitação de cada mês, o que indica que o mês de março teve as maiores intensidades de precipitação.

Observou-se, de modo geral, uma tendência de elevação percentual da precipitação associada a um aumento também percentual nos índices de erosividade, ou seja, houve uma concordância entre as distribuições médias mensais dos índices de erosividade e da precipitação.

Figura 3 – Distribuição percentual mensal de precipitação, dos índices de erosividade e do coeficiente de chuva na Estação Manuel Duarte.

Figura 4 – Distribuição percentual mensal de precipitação, dos índices de erosividade e do coeficiente de chuva na Estação Santa Isabel do Rio Preto.

Figura 5 – Distribuição percentual mensal de precipitação, dos índices de erosividade e do coeficiente de chuva na Estação Vila Mambucaba.

Figura 6 – Distribuição percentual mensal de precipitação, dos índices de erosividade e do coeficiente de chuva na Estação Ilha dos Pombos.

Figura 7 – Distribuição percentual mensal de precipitação, dos índices de erosividade e do coeficiente de chuva na Estação Santa Cecília.

Figura 8 – Distribuição percentual mensal de precipitação, dos índices de erosividade e do coeficiente de chuva na Estação Lajes.

Figura 9 – Distribuição percentual mensal de precipitação, dos índices de erosividade e do coeficiente de chuva, na Estação Tocos.

Figura 10 – Distribuição percentual mensal de precipitação, dos índices de erosividade e do coeficiente de chuva na Estação Tanguá.

Figura 11 – Distribuição percentual mensal de precipitação, dos índices de erosividade e do coeficiente de chuva na Estação Escola União.

Figura 12 – Distribuição percentual mensal de precipitação, dos índices de erosividade e do coeficiente de chuva na Estação Cachoeiras de Macacu.

Figura 13 – Distribuição percentual mensal de precipitação, dos índices de erosividade e do coeficiente de chuva na Estação Posto Garrafão.

Figura 14 – Distribuição percentual mensal de precipitação, dos índices de erosividade e do coeficiente de chuva na Estação Rio Mole.

Figura 15 – Distribuição percentual mensal de precipitação, dos índices de erosividade e do coeficiente de chuva na Estação Eletrobrás.

Figura 16 – Distribuição percentual mensal de precipitação, dos índices de erosividade e do coeficiente de chuva na Estação Capela Mayrink.

Na grande parte das estações analisadas, ou seja, sete, o trimestre correspondente aos meses de dezembro a fevereiro foi o com maiores potenciais erosivos. Fazem parte desse grupo as Estações Ilha dos Pombos, Santa Cecília, Tocos, Tanguá, Escola União, Cachoeiras de Macacu e Eletrobrás. Nessas estações ocorreram nesse trimestre, respectivamente, 56, 57, 66, 50, 59, 53 e 46% do índice de erosividade anual médio EI_{30} ; 54, 58, 67, 54, 60, 55 e 51% do índice de erosividade anual médio KE>25; e 56, 47, 54, 37, 43, 41 e 33% da precipitação média anual. Tais percentuais de distribuição, ocorridos nesse trimestre, indicam que no referido período se esperava grande parte das perdas anuais médias de solo nessas localidades, sobretudo se não houvesse uma adequada proteção da superfície do solo, o que indica que, nesse período em especial, o manejo deve ser bem feito.

O mês de janeiro apresentou os maiores valores dos índices de erosividade médios EI_{30} e KE>25 para quatro das 14 estações analisadas (Manuel Duarte, Santa Cecília, Lajes e Tocos, com 23, 21, 21 e 25% do índice de erosividade anual médio EI_{30} e com 21, 22, 22 e 27% do índice de erosividade anual médio KE>25, respectivamente). Os meses de fevereiro, março e dezembro exibiram os maiores índices de erosividade nas nove estações, sendo três destas para cada um dos referidos meses. A Estação Rio Mole foi a única em que o mês de abril apresentou os maiores valores dos índices de erosividade médios EI_{30} e KE>25, com 19 e 16%, respectivamente.

Os meses mais chuvosos foram janeiro, nas Estações Manuel Duarte, Lajes e Tocos, com 20, 18 e 20% da precipitação média anual e março, nas Estações Santa Isabel do Rio Preto e Vila Mambucaba, com 18 e 17%, respectivamente. Nas demais estações, notou-se que o mês de dezembro foi o mais chuvoso, alcançando maior percentual relativo.

Em contrapartida, o mês de agosto, além de apresentar os menores valores percentuais para a precipitação em nove estações, correspondeu ao mês com menores índices de erosividade médios EI_{30} e KE>25 em sete delas.

Em uma comparação entre os percentuais anuais médios dos índices EI_{30} e KE>25, levando em conta o semestre com maior potencial erosivo para cada

localidade, observou-se que em algumas estações ocorreram, nesse período, uma superação do EI_{30} em relação ao KE>25. Isso pôde ser verificado nas Estações Manuel Duarte, Santa Cecília, Lajes e Tocos. Cada uma dessas estações teve, no semestre de maior potencial erosivo, quatro situações em que o índice EI_{30} foi maior, percentualmente, que o KE>25, bem como duas oportunidades em que o KE>25 superou o EI_{30} , percentualmente. No entanto, houve estações que apresentaram maiores percentuais do KE>25 em relação ao EI_{30} , como Vila Mambucaba, Eletrobrás e Capela Mayrink que, em seus semestres de maior potencial erosivo, tiveram, em cinco dos seis meses do período, valores superiores de KE>25.

Nas estações em que o percentual do índice EI_{30} foi superior ao percentual do índice KE>25, pode-se dizer que se trata de estações que apresentaram baixas intensidades de precipitação no período mais crítico, no caso o semestre com maior potencial erosivo. Essa afirmativa parte do princípio de que, como ambos os índices levam em consideração a intensidade de precipitação, o índice KE>25, por somar apenas os segmentos em que a intensidade da chuva foi superior a 25 mm h⁻¹, forneceu menores valores.

O raciocínio inverso é válido, ou seja, estações em que o índice KE>25 é maior que o índice EI_{30} apresentaram maiores intensidades de precipitação, concentradas no período em questão. Considerando apenas o percentual, e não a magnitude, essas localidades podem vir a apresentar maiores problemas quanto à erosão.

Com relação ao coeficiente de chuva (Rc), pode-se dizer que ele apresentou distribuição mensal diversa daquela dos índices EI_{30} e KE>25. Isso pode ser parcialmente explicado, de acordo com BERTOL (1993), por serem esses índices diretamente influenciados pela intensidade das chuvas, enquanto o coeficiente Rc se reflete apenas à relação entre totais médios de chuva mensal e anual. Assim, os meses com chuvas mais intensas tendem a apresentar maiores índices de erosividade EI_{30} e KE>25, ao passo que os com maiores relações entre precipitação média mensal e precipitação média anual tendem a exibir maiores Rc.

78

Verificou-se, também, que as estações em geral não tiveram distribuição uniforme de precipitação ao longo do ano, exceções feitas à Eletrobrás e à Capela Mayrink. Verificou-se que nessas estações houve uma pequena amplitude entre os maiores e menores valores percentuais mensais. A Estação Eletrobrás apresentou, no mês de dezembro, o maior percentual, com 12% da precipitação média anual, enquanto em setembro esse valor foi de 4,5%, sendo o menor ao longo do ano. Na Estação de Capela Mayrink, a distribuição é ainda melhor, com uma amplitude de 4,3%. O mês de dezembro contribuiu com 10,6% e o mês de agosto, com 6,3%.

4.6. Mapas de isoerosividade

Nas Figuras 17 e 18 estão apresentados os mapas temáticos com os índices de erosividades anuais médios EI_{30} e KE>25 do Estado do Rio de Janeiro. Vale ressaltar, entretanto, que nesses mapas não estão contempladas as regiões Norte e Noroeste do Estado, por falta de estações pluviográficas nessas áreas.

Os mapas foram gerados com classes de 1.000 MJ mm ha⁻¹ h⁻¹ ano⁻¹ para o índice de erosividade EI_{30} e 10 MJ ha⁻¹ ano⁻¹ para KE>25. Para o índice EI_{30} foram encontradas 12 classes de índices de erosividade variando de 4.000 a 16.000 MJ mm ha⁻¹ h⁻¹ ano⁻¹. Para o índice KE>25, obtiveram-se 14 classes de índices de erosividade oscilando de 40 a 180 MJ ha⁻¹ ano⁻¹.

Para o índice EI_{30} , as classes de erosividade possuíam valores da ordem de 10.000 a 11.000 MJ mm ha⁻¹ h⁻¹ ano⁻¹, na parte mais litorânea da região Sul, chegando a valores máximos, próximos a 16.000 MJ mm ha⁻¹ h⁻¹ ano⁻¹, na região Serrana e decrescendo em direção ao norte, com valores da ordem de 6.000 MJ mm ha⁻¹ h⁻¹ ano⁻¹. A região Centro-Sul apresentou os menores valores de EI_{30} , ao redor de 4.000 MJ mm ha⁻¹ h⁻¹ ano⁻¹. O índice KE>25 teve o mesmo comportamento do índice EI_{30} .

Algumas considerações devem ser feitas para a utilização desses mapas, pois eles servem apenas como uma primeira aproximação, necessitando, portanto, do fornecimento de mais dados para que possam ser gerados resultados

Figura 17 – Mapa de isoerosividade do Estado do Rio de Janeiro, obtido por meio de interpolação do índice de erosividade EI₃₀.

Figura 18 – Mapa de isoerosividade do Estado do Rio de Janeiro, obtido por meio de interpolação do índice de erosividade KE>25.

mais confiáveis. Uma das opções para a melhoria das informações seria uma interpolação que correlacionasse a altitude local, o índice de erosividade e a precipitação média. O Estado do Rio de Janeiro tem peculiaridades específicas, como a já mencionada presença das Serras do Mar e da Mantiqueira, que fazem com que ocorram altos índices pluviométricos na região, contrastando com regiões de baixo índice de chuvas como o Vale do Paraíba. Por isso, mais localidades devem ser analisadas para complementar as informações obtidas por meio deste trabalho.

5. RESUMO E CONCLUSÕES

No presente trabalho foram analisadas as séries históricas de precipitação de 14 estações pluviográficas localizadas no Estado do Rio de Janeiro, cujo objetivo foi: estimar os índices de erosividade das chuvas EI₃₀ e KE>25, utilizando-se duas metodologias para estimativa da energia cinética (FOSTER et al., 1981; WAGNER e MASSAMBANI, 1988) daquelas localidades do Estado do Rio, com disponibilidade de dados pluviográficos; e os índices de erosividade médios mensais para as referidas localidades, com base em dados pluviométricos, bem como obter os mapas de isoerosividade para o referido Estado.

Os dados pluviográficos foram convertidos no formato digital, através da digitalização deles por meio do Sistema para Digitalização de Pluviogramas (HidroGraph 1.02). De posse dos pluviogramas, consideraram-se chuvas erosivas aquelas que apresentaram altura total precipitada igual ou superior a 10 mm. Para totais precipitados inferiores a 10 mm, as chuvas foram tidas como erosivas apenas quando a lâmina precipitada em 15 minutos foi de 6 mm ou mais. Eventos independentes foram concebidos como aqueles ocorridos em intervalo igual ou superior a seis horas consecutivas, em que a precipitação nesse intervalo foi inferior a 1 mm.

O índice EI_{30} foi obtido pelo produto da energia cinética da chuva *versus* a sua intensidade máxima em 30 minutos. Já o índice de erosividade KE>25 foi determinado a partir da soma dos valores de energia cinética das chuvas que possuíam intensidade, no intervalo de 10 minutos, iguais ou superiores a 25 mm h⁻¹. Pelo somatório dos valores dos índices EI_{30} e KE>25 das chuvas erosivas ocorridas em cada mês, obtiveram-se os índices EI_{30} e KE>25 mensais. O fator de erosividade da chuva foi conseguido por meio da soma dos valores das médias mensais da série histórica desses índices.

Os valores médios anuais do índice de erosividade EI_{30} das diferentes localidades, obtidos a partir dos dados pluviográficos, variaram de 4.268 a 16.225 MJ mm ha⁻¹ h⁻¹ ano⁻¹, usando-se a metodologia de WAGNER e MASSAMBANI (1988), e de 4.118 a 15.806 MJ mm ha⁻¹ h⁻¹ ano⁻¹ com a metodologia de FOSTER et al. (1981). Já para o índice KE>25 os valores oscilaram de 42 a 170 MJ ha⁻¹ mm⁻¹, utilizando-se a metodologia de WAGNER e MASSAMBANI (1988), e de 42 a 172 MJ ha⁻¹ mm⁻¹ com base em FOSTER et al. (1981).

A estimativa dos índices de erosividade médios mensais a partir de dados pluviométricos foi feita por meio de correlações dos índices de erosividade obtidos a partir da base de dados pluviográficos com a precipitação média mensal (p) ou com o coeficiente de chuva (Rc). Todas as equações ajustadas foram significativas, em nível de 1% de probabilidade, pelo teste F, e os coeficientes de determinação (R²) variaram de 0,61 a 0,99. A exceção foi a Estação de Capela Mayrink, que apresentou coeficientes de determinação ao redor de 0,40.

Foram obtidos mapas temáticos com os índices de erosividades do Estado do Rio de Janeiro, à exceção das regiões Norte e Noroeste, que não dispunham de estações pluviográficas. Como ferramenta básica para a elaboração dos mapas de isoerosividade foi utilizado o software de sistemas de informações geográficas ArcView GIS 3.2a. Os mapas foram gerados com classes de 1.000 MJ mm ha⁻¹ h⁻¹ ano⁻¹ para o índice de erosividade EI₃₀ e de 10 MJ ha⁻¹ mm⁻¹ para o índice KE>25. Para o EI₃₀ foram encontradas 12 classes

84

de erosividade, variando de 4.000 a 16.000 MJ mm ha⁻¹ h⁻¹ ano⁻¹. Para o KE>25 foram obtidas 14 classes de erosividade, oscilando de 40 a 180 MJ ha⁻¹ mm⁻¹.

A análise dos dados permitiu as seguintes conclusões:

- Os índices de erosividades das chuvas apresentaram, para os diferentes locais estudados, diferenças expressivas entre si, devido às características fisiográficas e à localização das estações.
- Não houve diferença entre as equações propostas por FOSTER et al. (1981) e WAGNER e MASSAMBANI (1988) para o cálculo da energia cinética das chuvas.
- A distribuição mensal dos índices de erosividade de cada localidade permitiu, de forma geral, concluir que os maiores potenciais erosivos concentravam-se no período de novembro–abril. Na maioria das estações, esse foi o semestre com maiores possibilidades de erosão hídrica no Estado do Rio de Janeiro.
- A estimativa da erosividade das chuvas a partir da precipitação média mensal (p) proporcionou melhores resultados do que quando se usou o coeficiente de chuva (Rc).
- As localidades onde o índice EI₃₀ foi proporcionalmente superior ao índice KE>25 foram caracterizadas por apresentar intensidades de precipitação menores no período mais crítico, no caso o semestre com maior potencial erosivo.
- O número médio anual de chuvas erosivas nas localidades analisadas foi de 45, correspondendo a 34% do número total de eventos.

REFERÊNCIAS BIBLIOGRÁFICAS

- ALBUQUERQUE, A. W.; CHAVES, I. B.; VASQUES FILHO, J. Características físicas da chuva correlacionadas com as perdas de solo num regossolo eutrófico de Caruaru (PE). Revista Brasileira de Ciência do Solo, Campinas, v.30, n.18, p.279-83, 1994.
- BEASLEY, D. B.; HUGGINS, L.F.; MONKE, E.J. ANSWERS: A model for watershed planning. **Transactions of the ASAE**, v.23, n.4, p.938-44, 1980.
- BERTOL, I. Avaliação da erosividade da chuva na localidade de Campos Novos (SC) no período de 1981-1990. Pesquisa Agropecuária Brasileira, Brasília, v.29, n.9, p.1453-8, set. 1994.
- BERTOL, I. Índice de erosividade (EI₃₀) para Lages (SC) 1ª aproximação. **Pesquisa Agropecuária Brasileira**, Brasília, v.28, n.4, p.515-21, abr. 1993.
- BISCAIA, R. C. M.; RUFINO, R. L.; HENKLAIN, J. C. Cálculo da erodibilidade de dois solos do Estado do Paraná. Revista Brasileira de Ciência do Solo, Campinas, n.5, p.183-6, 1981.
- CABEDA, M.S.V. Computation of storm EI value. West Lafayette: Purdue University, 1976. 6p.
- CAMPOS FILHO, O. R.; SILVA, I. F.; ANDRADE, A. P.; LEPRUN, J. C. Avaliação da erosividade e erodibilidade do agreste pernambucano. In: CONGRESSO BRASILEIRO DE CONSERVAÇÃO DO SOLO, 5., 1984, Porto Alegre. **Resumos...** Porto Alegre: SBCS, 1984. p54.

- CARVALHO, M. P.; HERNANI, L. C. Parâmetros de erosividade da chuva e enxurrada correlacionados com perdas de solo e erodibilidade de um Latossolo Roxo de Dourados (MS). Revista Brasileira de Ciência do Solo, v.25, p. 137-46, 2001.
- CARVALHO, M.P. Erosividade da chuva: distribuição e correlação com as perdas de solo de Mococa - SP. Piracicaba, SP: USP, 1987. 104 f. Dissertação (Mestrado em Solos e Nutrição de Plantas) – Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba.
- CHAVES, I. B.; DINIZ, E. J. Erosividade das chuvas no Estado da Paraíba. In: ENCONTRO NACIONAL DE PESQUISA SOBRE CONSERVAÇÃO DO SOLO, 3., 1981, Recife. **Resumos...** Recife: SBCS, 1981. p.136-47.
- COGO, N. P.; DREWS, C. R.; GIANELLO, C. Índice de erosividade das chuvas dos municípios de Guaíba, Ijuí e Passo Fundo, no Estado do Rio Grande do Sul. In: ENCONTRO NACIONAL DE PESQUISA SOBRE CONSERVAÇÃO DO SOLO, 2., 1978, Passo Fundo. Anais... Passo Fundo, RS: CNTRIGO; EMBRAPA; SNLCS, 1978. p.145-52.
- COLODRO, G. Erosividade da chuva: distribuição e correlação com a precipitação pluviométrica de Teodoro Sampaio (SP). Ilha Solteira, SP: Universidade Estadual Paulista "Júlio de Mesquita Filho", 1999. 77 f. Dissertação (Mestrado em Solos e Nutrição de Plantas) – Universidades Júlio Mesquita, Teodoro Sampaio.
- CPRM, Companhia de Pesquisa de Recursos Minerais. Estudo de chuvas intensas no Estado do Rio de Janeiro. Belo Horizonte: CPRM, 2000. 139 p.
- DEDECEK, R.A. Capacidade erosiva das chuvas de Brasília-DF. In: ENCONTRO NACIONAL DE PESQUISA SOBRE CONSERVAÇÃO DO SOLO, 2., 1978, Passo Fundo. Anais... [S.1.]: Embrapa-SNLCS, 1978. p.157-61.
- FAO. La erosion del solo por el água algunas medidas para combertila en las tierras de cultivo. Roma: Organization de Las Nacioes Unidas, 1967. 207 p. (Caderno de Fomento Agropecuário, 81).
- FOSTER, G. R.; LOMBARDI NETO, F.; MOLDENHAUER, W. C. Evaluation of rainfall-runoff erosivity factores for individual storms. **Transactions of the ASAE**, St. Joseph, v.25, p.124-9, 1982.
- FOSTER, G. R.; McCOOL, D. K.; RENARD, K. G.; MOLDENHAUER, W. C. Conversion of the universal soil loss equation to SI units. Journal of Soil and Water Conservation, Baltimore, v. 36, p. 355-9, 1981.

- FOURNIER, F. The effect of climatic factors on soil erosion estimates of solids transported in suspension in runoff. [S.l.]: Association Hydrologic Int. Public, 1956. v.38, 6 p.
- HUDSON, N. Soil conservation. New York: Cornell University, 1971. 324 p.
- HUDSON, N. W. Soil conservation. Ithaca: Cornell University Press, 1973. 320 p.
- LAGO, J. C. Erosividade das chuvas de Pelotas. In: ENCONTRO NACIONAL DE PESQUISA SOBRE CONSERVAÇÃO DO SOLO, 5., 1984, Porto Alegre. Resumos... Porto Alegre, SBCS, 1984. p. 72.
- LAL, R. Erodibility and erosivity. In: LAL, R. Soil erosion research methods. Ankeny: SWCS, 1988. p.141-60.
- LEPRUN, J. C. A erosão, a conservação e o manejo do solo no Nordeste brasileiro; Balanço, diagnóstico e novas linhas de pesquisa. Recife, SUDENE; ORSTOM, 1981. 107 p.
- LOMBARDI NETO, F. **Rainfall erosivity -** Its distribution and relationship with soil loss at Campinas, Brazil. West Lafayette: Purdue University, 1977. 53 p. (M.Sc. Thesis).
- LOMBARDI NETO, F.; SILVA, I. R.; CASTRO, O. M. Potencial de erosão das chuvas no Estado de São Paulo. In: ENCONTRO NACIONAL DE PESQUISA SOBRE CONSERVAÇÃO DO SOLO, 3., 1981, Recife. Resumos... Recife: SBCS, 1981. p.159.
- MARQUES, J. J. G. S. M.; ALVARENGA, R. C.; CURI, N. Erosividade das chuvas da região de Sete Lagoas, MG. Revista Brasileira de Ciência do Solo, v.33, n.5, p.285-8, 1988.
- MARQUES, J. J. G. S. M.; ALVARENGA, R. C.; CURI, N.; SANTANA, D. P.; SILVA, M. L. N. Índices de erosividade da chuva, perdas de solo e fator erodibilidade para dois solos da região dos cerrados - primeira aproximação. Revista Brasileira de Ciência do Solo, v.21, p. 427-34, 1997.
- McGREGOR, K.C.; BINGER, R.L.; BOWIE, A.J.; FOSTER, G.R. Erosivity index values for northern Mississippi. **Transactions of the ASAE**, St. Joseph, v.38, n.4, p.1039-47, jul./aug. 1995.
- MEDINA, B.F.; OLIVEIRA JÚNIOR, R.C. A aplicabilidade de alguns índices erosivos em Latossolo Amarelo de Manaus (AM). Revista Brasileira de Ciência do Solo, Campinas, v.11, n.1, p.67-70, jan./abr. 1987.

- MIKHAILOVA, E. A.; BRYANT, R. B.; SCHWANGER, S. J.; SMITH, S. D. Predictin rainfall erosivity in Honduras. Soil Science Society of America, v.61, p. 273-9, 1997.
- MORAIS, L. F. B.; MUTTI, L. S. M.; ELTZ, F. L. F. Relações entre características físicas da chuva e perdas de solo no Rio Grande do Sul. **Revista Brasileira de Ciência do Solo**, v. 20, n.12, p.285-8, 1988.
- MORAIS, L.F.B.; SILVA, V.; NASCHENVENG, T.M.C.; HARDOIN, P.C.; ALMEIDA, J.E.L.; WEBER, O.L.S.; BOEL, E.; DURIGON, V. Índice EI₃₀ e sua relação com o coeficiente de chuva do sudoeste do Mato Grosso. Revista Brasileira de Ciência do Solo, Campinas, v.15, n.3, p.339-44, set./dez. 1991.
- MOURA, A.R.B.; MEDEIROS, J.F. Determinação inicial da erosividade da chuva (fator R) em 1985, em Mossoró (RN). Revista Brasileira de Ciência do Solo, Campinas, v.11, n.2, p.229-31, maio/ago. 1987.
- OLIVEIRA JUNIOR, R. C. A erosividade das chuvas na parte leste do Estado do Pará. Belém: FCAP, 1988. 52 f. (Tese de Mestrado).
- OLIVEIRA JÚNIOR, R.C.; MEDINA, B.F. A erosividade das chuvas em Manaus (AM). Revista Brasileira de Ciência do Solo, Campinas, v.14, n.2, p.235-9, maio/ago. 1990.
- PEREIRA, H. H. G. Índice de erosividade de chuvas: distribuição e relações com a precipitação em Piracicaba (SP). Piracicaba, SP: 1983. 70 f. Dissertação (Mestrado em Solos e Nutrição de Plantas) – Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba.
- PEREIRA, W. Avaliação da erosividade das chuvas em diferentes locais do Estado de Minas Gerais. Viçosa, MG: UFV, Impr. Univ., 1977. 73 f. Dissertação (Mestrado em Fitotecnia) – Universidade Federal de Viçosa, Viçosa.
- RENARD, K.G.; FOSTER, G.R.; WEESIES, G.A.; PORTER, J.P. RUSLE: Revised universal soil loss equation. Journal of Soil and Water Conservation, v.46, n.1, p.30-3, 1991.
- RENARD, K.G.; FOSTER, G.R.; YODER, D.C.; McCOOL, D.K. RUSLE revised: status, questions, answers, and the future. Journal of Soil and Water Conservation, Ankeny, v.49, n.3, p.213-20, may/jun. 1994.
- ROQUE, C. G.; CARVALHO, M. P.; PRADO, R. M. Fator erosividade da chuva de Piraju (SP): Distribuição, probabilidade de ocorrência, período de retorno e correlação com o coeficiente de chuva. Revista Brasileira de Ciência do Solo, v.25, p.147-56, 2001.

- RUFINO, R. L.; BISCAIA, R. C. M.; MERTEN G. H. Determinação do potencial erosivo da chuva do Estado do Paraná através de pluviometria: terceira aproximação. Revista Brasileira de Ciência do Solo, Campinas, v.30, n.17, p.439-44, 1993.
- RUFINO, R.L. Avaliação do potencial erosivo da chuva para o Estado do Paraná: segunda aproximação. Revista Brasileira de Ciência do Solo, Campinas, v.10, n.3, p.279-81, set./dez. 1986.
- SALAKO, F. K.; GHUMAN, B. S.; LAL, R. Rainfall erosivity in south-central Nigeria. Soil Technology, v.7, p.279-90, 1995.
- SILVA, D.D.; PRUSKI, F.F. Recursos hídricos e desenvolvimento sustentável da agricultura. Brasília: MMA/SRH/ABEAS, 1997. 252 p.
- SILVA, M. L. N.; FREITAS, P. L.; BLANCANEAUX, P.; CURI, N. Índices de erosividade das chuvas da região de Goiânia, GO. Revista Brasileira de Ciência do Solo, v.32, n.10, p.275-89, 1997.
- SOSA, D. A. Erosividade da chuva. Distribuição e correlação com as perdas de solo para Pindorama, São Paulo, Brasil. Piracicaba, SP: ESALQ, 1987.
 105 f. Dissertação (Mestrado em Agronomia) Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba.
- VAL, L. A. Avaliação da erosividade das chuvas do município de Lavras (MG). Lavras, MG: ESAL, 1985. 72 f. Dissertação (Mestrado em Agronomia) – Escola Superior de Agricultura de Lavras, Lavras.
- VAL, L.A.; BAHIA, V.G.; FREIRE, J.C.; DIAS JÚNIOR, M.S. Erosividade das chuvas em Lavras, MG. Ciência e Prática, Lavras, v.10, n.2, p.199-209, maio/ago. 1986.
- WAGNER, C. S.; MASSAMBINI, O. Análise da relação intensidade de chuva: energia de Wischmeier & Smith e sua aplicabilidade à região de São Paulo. Revista Brasileira de Ciência do Solo, Brasília, v.12, p.197-203, 1988.
- WILLIAMS, J. R.; BERNDT, H. D. Sedmient yield computed with universal soil loss equation. J. Hydr. Div., ASCE 98(HY 12), p. 2087-98, 1972.
- WISCHMEIER, W. H.; SMITH, D. D. Rainfall energy and its relationship to soil loss. Transaction American Geophysical Union, Washington, v.39, p.285-91, 1958.
- WISCHMEIER, W.H.; SMITH, D.D. **Predicting rainfall erosion losses**: a guide to conservation planning. Washington, DC: USDA, 1978. 58 p. (Agriculture Handbook, 537).

WISCHMEIER, W.H.; SMITH, D.D. Predicting rainfall-erosion losses from cropland east of the Rocky Mountains: guide for selection of practices for soil and water conservation. Washington, DC: USDA, 1965. 47 p. (Agricultural Handbook, 282).

APÊNDICES

APÊNDICE A

Quadro 1A – Valores mensais, anuais e médios dos índices de erosividade EI₃₀, em MJ mm ha⁻¹ h⁻¹ ano⁻¹, e KE>25, em MJ ha⁻¹ ano⁻¹, da Estação Manuel Duarte, obtidos com base na metodologia para o cálculo da energia cinética proposta por WAGNER e MASSAMBANI (1988), com as respectivas medidas estatísticas de dispersão

Ano	Ja	n.	Fe	v.	Ма	ır.	Al	or.	Ma	io	Ju	n.	Ju	ıl.	Ag	<u>3</u> 0.	Se	t.	Ou	ıt.	No	v.	De	ez.	Тс	otal
Allo	KE>25	EI30	KE>25	EI ₃₀	KE>25	EI30	KE>25	EI30	KE>25	EI30	KE>25	EI30	KE>25	EI30	KE>25	EI30	KE>25	EI30	KE>25	EI30	KE>25	EI30	KE>25	EI30	KE>25	EI30
1989	19,2	1.887	0,0	518	1,5	171	2,9	508	0,0	32	0,0	63	0,0	23	2,9	268	0,0	53	0,0	16	2,8	174	0,0	394	29,2	4.107
1990	13,2	849	6,4	442	8,8	657	0,0	237	0,0	45	0,0	0	0,0	27	0,0	0	1,2	106	4,5	203	2,0	269	0,0	117	36,2	2.951
1991	6,3	1.168	6,1	760	0,0	92	2,4	433	0,0	8	0,0	27	0,0	23	0,0	0	4,8	256	0,0	128					19,5	2.895
1993	4,8	558	0,0	319	8,7	484	16,2	1.590	0,0	0	0,0	0	0,0	0	0,0	0	2,6	193	14,1	840	20,1	1.092	12,5	1.197	79,0	6.274
1994	1,2	466	5,0	430	25,1	2.594	1,3	103	0,0	0	0,0	20	0,0	0	0,0	0	0,0	0	1,0	269	1,2	250	0,0	88	34,9	4.219
Média	8,9	986	3,5	494	8,8	799	4,5	574	0,0	17	0,0	22	0,0	15	0,6	54	1,7	122	3,9	291	6,6	446	3,1	449	41,7	4.268
D. P.	7,2	574	3,2	165	10,0	1.029	6,6	590	0,0	20	0,0	26	0,0	13	1,3	120	2,0	104	6,0	321	9,1	432	6,2	517	22,9	1.371
C. V. (%)	80,6	58	92,5	33	113,2	129	144,9	103	-	120	-	118	-	92	223,6	224	118,0	85	152,2	110	138,3	97	200,0	115	54,9	32
E. P. M.	3,2	257	1,4	74	4,5	460	2,9	264	0,0	9	0,0	11	0,0	6	0,6	54	0,9	46	2,7	144	4,5	216	3,1	259	10,2	613

Quadro 2A – Valores mensais, anuais e médios dos índices de erosividade EI₃₀, em MJ mm ha⁻¹ h⁻¹ ano⁻¹, e KE>25, em MJ ha⁻¹ ano⁻¹, da Estação Santa Isabel do Rio Preto, obtidos com base na metodologia para o cálculo da energia cinética proposta por WAGNER e MASSAMBANI (1988), com as respectivas medidas estatísticas de dispersão

Ano	Ja	n.	Fe	V.	М	ar.	At	or.	Ma	io	Ju	1.	Ju	1.	Ag	0.	Se	t.	0	ut.	No	V.	De	Z.	Тс	otal
Allo	KE>25	EI30	KE>25	EI30	KE>25	EI ₃₀	KE>25	EI ₃₀	KE>25	EI ₃₀	KE>25	EI30	KE>25	EI30	KE>25	EI30	KE>25	EI30	KE>25	EI30	KE>25	EI ₃₀	KE>25	EI ₃₀	KE>25	EI30
1990	13,7	965	6,6	507	21,2	1.489	17,5	1.220	2,7	167	0,0	0	7,3	564	0,0	0	0,0	146	1,2	115	17,7	885	14,8	968	102,8	7.025
1991	29,4	2.248	30,6	1.534	33,1	2.516	19,9	1.255	0,0	10	0,0	0	1,0	70	0,0	0	0,0	90	1,4	150	0,0	58	17,3	1.037	132,8	8.968
1992	11,6	1.435	5,4	312	6,2	1.022	13,4	1.118	0,0	105	0,0	0	0,0	19	0,0	0	3,9	320	7,6	659	2,6	432	0,0	334	50,6	5.756
1993	1,1	380	11,4	1.813	18,2	1.355	6,1	397	0,0	27	1,6	173	0,0	0	0,0	0	4,2	353	13,4	1.097	0,0	101	5,7	564	61,8	6.261
1994	6,2	585	2,3	157	13,0	1.158	0,0	220	0,0	145	0,0	0	0,0	0	0,0	0	0,0	0	0,0	59	0,0	145	1,1	387	22,6	2.856
1995	11,3	674	0,0	188	1,9	155	0,0	0	1,6	138	0,0	0	0,0	38	0,0	0	16,8	1.450	21,7	2.456	10,1	728	17,5	1.798	81,0	7.625
1996	15,5	1.254	47,1	2.723	29,7	1.993	15,0	1.339	0,0	0	0,0	2	0,0	0	2,6	142	1,5	384	6,9	594	8,1	1.025	37,1	2.372	163,5	11.828
Média	12,7	1.077	14,8	1.033	17,6	1.384	10,3	793	0,6	85	0,2	25	1,2	99	0,4	20	3,8	392	7,5	733	5,5	482	13,4	1.066	87,9	7.188
D. P.	8,8	637	17,5	999	11,5	748	8,2	565	1,1	71	0,6	65	2,7	207	1,0	54	6,0	488	7,9	847	6,8	400	12,8	764	48,9	2.787
C. V. (%)	69,8	59	118,4	97	65,5	54	80,0	71	178,2	83	264,6	261	228,8	210	264,6	265	159,3	125	105,3	116	123,5	83	96,1	72	55,6	39
E. P. M.	3,3	241	6,6	378	4,4	283	3,1	213	0,4	27	0,2	25	1,0	78	0,4	20	2,3	185	3,0	320	2,6	151	4,9	289	18,5	1.053

Quadro 3A – Valores mensais, anuais e médios dos índices de erosividade EI₃₀, em MJ mm ha⁻¹ h⁻¹ ano⁻¹, e KE>25, em MJ ha⁻¹ ano⁻¹, da Estação Vila Mambucaba, obtidos com base na metodologia para o cálculo da energia cinética proposta por WAGNER e MASSAMBANI (1988), com as respectivas medidas estatísticas de dispersão

Ano	Ja	n.	Fe	ev.	M	ar.	A	br.	Ма	iio	Ju	n.	Ju	1.	Ag	0.	Se	t.	Οι	ıt.	No	v.	De	ez.	Тс	otal
Allo	KE>25	EI30	KE>25	EI30	KE>25	EI30	KE>25	EI30	KE>25	EI ₃₀	KE>25	EI30	KE>25	EI30	KE>25	5 EI ₃₀										
1991	0,0	552	17,7	1.516	34,4	3.170	20,2	1.665	8,5	1.332	2,8	395	3,2	210	0,0	0	0,0	256	1,5	224	0,0	18	5,1	368	93,5	9.707
1992	58,7	3.480	0,0	308	1,8	102	3,2	130	0,0	88	1,9	67	0,0	52	4,0	222	2,4	285	0,0	670	2,7	1.315	0,0	254	74,7	6.974
1993	18,7	3.665	21,9	1.787	3,1	453	0,0	265	0,0	17	0,0	73	0,0	34	0,0	0	0,0	244	5,9	367	0,0	164	2,2	193	51,9	7.262
1994	2,4	263	1,4	142	39,7	4.583	24,3	2.763	0,0	0	2,5	486	0,0	36	0,0	0	0,0	162	0,0	217	1,0	265	30,4	2.383	101,7	11.300
1995	11,9	1.169	2,0	773	28,3	2.914	0,0	57	0,0	417	0,0	113	0,0	47	0,0	196	0,0	216	2,8	643	17,0	3.454	2,0	374	63,9	10.373
1996	0,0	0	94,5	9.405	31,1	3.820	22,1	2.377	0,0	169	0,0	120	0,0	84	0,0	50	2,1	421	0,0	140	2,6	500	3,6	207	155,9	17.293
Média	15,3	1.522	22,9	2.322	23,1	2.507	11,6	1.209	1,4	337	1,2	209	0,5	77	0,7	78	0,7	264	1,7	377	3,9	953	7,2	630	90,3	10.485
D. P.	22,5	1.637	36,3	3.530	16,4	1.824	11,7	1.214	3,5	511	1,3	183	1,3	67	1,6	104	1,2	88	2,4	229	6,5	1.308	11,5	863	37,0	3.751
C. V. (%)	147,6	108	158,2	152	71,1	73	100,6	100	244,9	151	112,2	87	244,9	87	244,9	133	155,4	33	138,0	61	168,2	137	159,4	137	41,0	36
E. P. M.	9,2	668	14,8	1.441	6,7	745	4,8	496	1,4	208	0,6	75	0,5	28	0,7	42	0,5	36	1,0	94	2,7	534	4,7	352	15,1	1.531

Quadro 4A – Valores mensais, anuais e médios dos índices de erosividade EI₃₀, em MJ mm ha⁻¹ h⁻¹ ano⁻¹, e KE>25, em MJ ha⁻¹ ano⁻¹, da Estação Ilha dos Pombos, obtidos com base na metodologia para o cálculo da energia cinética proposta por WAGNER e MASSAMBANI (1988), com as respectivas medidas estatísticas de dispersão

Ano	Jan. Fev.		v.	Mar.		Abr.		Maio		Jur	1.	Ju	Ι.	Ag	0.	Se	t.	Ou	t.	No	v.	De	z.	Тс	otal	
Allo	KE>25	EI ₃₀	KE>25	EI ₃₀	KE>25	EI30	KE>25	EI30	KE>25	EI30	KE>25	EI ₃₀	KE>25	EI30	KE>25	EI30	KE>25	EI30	KE>25	EI ₃₀	KE>25	EI ₃₀	KE>25	EI30	KE>25	5 EI ₃₀
1976	21,1	1.720	7,5	721	11,6	1.281	0,0	0	1,4	90	0,0	0	0,0	5	1,6	324	0,0	166	5,9	790	14,2	921	20,7	1.311	84,0	7.330
1977	31,3	2.233	0,0	0	5,1	386	6,0	635	4,4	129	0,0	0	0,0	0	0,0	0	0,0	270	10,6	801	5,0	642	10,6	848	73,1	5.944
1978	5,3	576	1,2	530	5,4	695	3,4	239	3,6	262	1,4	25	0,0	0	0,0	0	0,0	0	10,4	619	17,5	2.031	19,8	1.785	68,0	6.761
1979	0,0	265	28,3	3.447	16,1	1.016	8,1	388	0,0	39	0,0	0	0,0	55	8,5	693	0,0	18	3,8	256	13,4	1.355	22,3	1.706	100,6	9.237
1980	6,4	918	4,7	473	0,0	0	2,9	262	0,0	0	0,0	0	0,0	0	0,0	0	0,0	32	0,0	151	0,0	134	2,2	213	16,2	2.182
1981	2,6	201	3,0	103	6,7	379	1,1	67	0,0	0	0,0	0	0,0	0	0,0	0	10,9	757	1,5	94	8,0	694	11,4	1.329	45,1	3.624
1982	8,7	732	0,0	29	41,5	3.716	0,0	61	1,0	50	0,0	0	0,0	27	5,8	279	0,0	0	2,5	276	11,4	695	47,0	3.805	117,9	9.671
1983	43,1	3.065	19,9	1.354	28,4	2.142	8,2	600	3,7	308	0,0	48	0,0	0	0,0	0	1,5	297	4,6	664	1,6	228	12,7	1.120	123,6	9.826
1984	3,3	281	0,0	0	23,5	1.526	5,2	637	1,2	78	0,0	0	0,0	0	0,0	0	7,5	339	0,0	56	1,2	207	13,3	889	55,2	4.014
1985	25,2	1.670	10,2	872	12,9	874	4,3	129	0,0	0	4,3	225	0,0	0	5,8	331	12,4	709	16,3	980	0,0	0	23,8	1.587	115,1	7.376
1986	7,2	619	7,9	359	15,6	1.079	0,0	51	0,0	0	0,0	0	0,0	12	0,0	61	4,3	233	0,0	0	13,4	836	0,0	151	48,3	3.400
1988	0,0	26	9,7	914	0,0	0	0,0	9	4,8	248	2,4	111	0,0	0	0,0	0	1,2	22	0,0	0	0,0	0	9,7	667	27,8	1.998
1989	17,0	1.319	12,7	817	9,0	509	2,5	167	0,0	0	0,0	0	1,6	70	0,0	0	0,0	0	1,4	159	0,0	79	2,1	265	46,2	3.385
1990	16,3	925	31,9	3.665	0,0	0	0,0	0	0,0	0	0,0	0	0,0	19	0,0	0	2,7	116	2,8	176	7,0	396	12,3	868	72,9	6.164
1991	0,0	76	12,0	941	7,4	710	8,8	520	0,0	0	0,0	0	0,0	0	0,0	0	0,0	18	0,0	0	12,1	845	42,9	3.266	83,2	6.376
Média	12,5	975	9,9	948	12,2	954	3,4	251	1,3	80	0,5	27	0,1	12	1,4	112	2,7	198	4,0	335	7,0	604	16,7	1.321	71,8	5.819
D. P.	12,9	876	10,0	1.133	11,6	971	3,3	243	1,8	108	1,2	62	0,4	22	2,8	205	4,2	248	4,9	338	6,3	561	13,6	1.041	32,8	2.623
C. V. (%)	103,5	90	100,3	119	95,0	102	96,9	97	135,8	135	232,5	229	387,3	177	194,4	182	156,2	125	123,0	101	90,0	93	81,2	79	45,6	45
E. P. M.	3,3	226	2,6	293	3,0	251	0,8	63	0,5	28	0,3	16	0,1	6	0,7	53	1,1	64	1,3	87	1,6	145	3,5	269	8,5	677
Quadro 5A – Valores mensais, anuais e médios dos índices de erosividade EI₃₀, em MJ mm ha⁻¹ h⁻¹ ano⁻¹, e KE>25, em MJ ha⁻¹ ano⁻¹, da Estação Santa Cecília, obtidos com base na metodologia para o cálculo da energia cinética proposta por WAGNER e MASSAMBANI (1988), com as respectivas medidas estatísticas de dispersão

Ano	Ja	n.	Fe	ev.	Ma	ar.	At	or.	Ma	io	Ju	1.	Ju	1.	Ag	0.	Se	t.	Ou	ıt.	No	OV.	De	Z.	Тс	otal
Allo	KE>25	EI ₃₀	KE>25	EI30	KE>25	EI30	KE>25	EI30	KE>25	EI ₃₀	KE>25	EI ₃₀	KE>25	EI30	KE>25	EI30	KE>25	EI ₃₀	KE>25	EI30	KE>25	EI30	KE>25	EI ₃₀	KE>25	EI30
1963	10,5	721	8,0	678	5,0	341	10,5	1.018	0,0	0	0,0	0	0,0	0	0,0	0	0,0	0	0,0	40	11,1	732	5,2	390	50,4	3.920
1964	0,0	104	30,2	3.284	0,0	4	0,0	0	0,0	33	0,0	0	0,0	16	0,0	0	0,0	0	9,2	519	0,0	194	6,0	304	45,4	4.457
1973	36,6	2.562	8,9	582	3,3	372	7,6	500	0,0	21	0,0	0	0,0	33	2,1	113	0,0	39	2,3	281	1,1	294	7,0	809	68,8	5.607
1974	10,5	841	6,2	385	14,0	1.003	0,0	45	0,0	0	6,0	396	0,0	0	0,0	0	0,0	0	5,3	386	0,0	166	14,2	1.426	56,3	4.649
1975	7,6	655	13,4	1.457	0,0	34	2,0	103	3,3	115	0,0	61	0,0	0	0,0	0	0,0	22	6,5	722	14,0	1.589	11,3	1.052	58,1	5.810
1976	45,1	3.536	21,5	1.544	15,6	1.044	7,7	716	1,0	64	0,0	96	0,0	7	0,0	181	0,0	22	2,4	134	6,8	535	13,7	808	113,9	8.687
1982	15,0	1.253	1,8	485	10,8	855	0,0	0	0,0	0	0,0	0	1,3	77	0,0	0	0,0	0	1,0	170	12,8	575	16,4	1.211	59,3	4.625
1986	2,5	65	0,0	59	1,1	148	2,2	249	0,0	0	0,0	0	0,0	73	0,0	66	4,5	222	0,0	0	0,0	0	14,1	919	24,4	1.801
1988	16,5	1.048	15,3	1.172	5,0	500	2,5	142	4,7	285	0,0	22	0,0	0	0,0	0	0,0	14	6,9	705	1,2	101	19,2	1.600	71,3	5.589
1990	18,4	1.912	6,8	525	14,1	1.189	0,0	257	0,0	0	0,0	0	4,5	288	0,0	0	0,0	125	14,4	922	17,1	1.426	4,1	207	79,3	6.851
1991	12,3	923	17,2	815	22,2	2.040	5,2	581	0,0	63	4,5	256	0,0	0	0,0	0	0,0	148	2,8	387	8,2	556	42,4	4.242	114,6	10.012
1992	0,0	0	0,0	40	8,7	682	8,1	470	0,0	56	0,0	0	0,0	6	0,0	0	0,0	192	0,0	44	8,9	1.019	13,6	932	39,2	3.440
1993	7,0	555	9,1	645	12,0	536	3,2	146	0,0	57	0,0	15	0,0	0	0,0	0	0,0	10	0,0	15	2,5	187	3,7	525	37,5	2.691
1996	9,7	658	2,9	130	17,2	1.819	15,3	815	0,0	12	0,0	4	0,0	0	0,0	96	0,0	156	1,4	123	0,0	16	0,0	0	46,4	3.828
Média	13,7	1.060	10,1	843	9,2	755	4,6	360	0,6	50	0,7	61	0,4	36	0,1	33	0,3	68	3,7	318	6,0	528	12,2	1.030	61,8	5.140
D. P.	12,9	998	8,7	845	7,0	621	4,7	327	1,5	76	1,9	119	1,2	77	0,6	58	1,2	82	4,3	300	6,1	508	10,3	1.033	26,5	2.225
C. V. (%)	94,2	94	86,0	100	75,9	82	101,8	91	228,6	151	256,9	196	294,5	217	374,2	179	374,2	120	114,4	94	101,3	96	84,6	100	42,9	43
E. P. M.	3,4	267	2,3	226	1,9	166	1,2	87	0,4	20	0,5	32	0,3	21	0,1	16	0,3	22	1,1	80	1,6	136	2,8	276	7,1	595

Quadro 6A – Valores mensais, anuais e médios dos índices de erosividade EI₃₀, em MJ mm ha⁻¹ h⁻¹ ano⁻¹, e KE>25, em MJ ha⁻¹ ano⁻¹, da Estação Lajes, obtidos com base na metodologia para o cálculo da energia cinética proposta por WAGNER e MASSAMBANI (1988), com as respectivas medidas estatísticas de dispersão

Ano	J	an.	F	ev.	Ν	Mar.	1	Abr.	Ν	1aio	J	un.	J	Jul.	A	Ago.	2	Set.	(Dut.	Ν	Nov.	Ι	Dez.	Т	otal
	KE>25	5 EI ₃₀	KE>2:	5 EI ₃₀	KE>2	5 EI ₃₀	KE>2	5 EI ₃₀	KE>2:	5 EI ₃₀	KE>2	5 EI ₃₀	KE>2:	5 EI ₃₀	KE>2	5 EI ₃₀	KE>2	5 EI ₃₀	KE>25	5 EI ₃₀						
1966	21,6	1.876	13,3	874	31,9	3.161	7,8	625	13,0	994	0,0	0	0,0	66	0,0	24	0,0	0	1,0	349	29,2	3.596	23,5	2.917	141,2	7.147
1967	109,1	9.768	14,1	701	37,7	3.286	0,0	94	0,0	0	0,0	0	0,0	40	0,0	0	0,0	4	0,0	77	0,0	108	8,1	795	169,0	1.200
1968	11,3	1.103	1,5	260	4,1	335	0,0	36	0,0	0	0,0	0	0,0	0	0,0	73	0,0	27	0,0	29	7,5	576	1,4	388	25,9	1.127
1969	17,3	1.167	0,0	141	3,9	221	7,3	630	0,0	32	0,0	46	0,0	0	0,0	20	5,0	281	6,8	507	13,6	780	9,4	529	63,2	2.214
1970	2,2	360	2,9	161	2,5	252	0,0	119	0,0	0	0,0	9	0,0	11	10,6	786	4,6	218	29,5	1.869	10,6	932	6,9	523	69,8	4.470
1971	12,8	1.397	11,6	1.073	0,0	0	0,0	99	1,0	92	0,0	63	3,9	131	0,0	14	4,6	322	14,0	1.052	13,8	1.383	9,9	950	71,6	3.967
1973	9,9	800	3,4	490	8,0	483	8,3	949	0,0	56	0,0	0	0,0	80	2,0	60	0,0	0	6,1	442	15,7	1.506	24,9	2.172	78,3	4.387
1974	7,1	348	28,4	3.606	5,8	380	3,9	295	1,8	67	1,7	133	0,0	0	0,0	0	0,0	0	10,4	755	11,8	616	20,2	1.926	91,1	3.431
1977	26,6	2.184	0,0	0	7,4	417	6,3	388	0,0	0	3,0	89	1,5	59	0,0	87	1,1	244	0,0	38	1,0	185	9,1	1.126	55,9	1.807
1978	1,3	112	17,9	1.548	6,3	560	4,1	255	0,0	35	1,7	62	1,5	76	0,0	11	0,0	0	2,8	198	4,3	481	11,1	1.201	51,0	2.036
1979	28,5	2.210	3,4	386	14,7	1.112	0,0	52	0,0	0	0,0	0	0,0	19	6,9	496	2,5	266	17,3	946	8,9	467	11,4	995	93,7	3.329
1980	14,7	1.134	8,3	412	10,0	841	4,8	420	0,0	0	0,0	20	0,0	0	0,0	18	0,0	30	2,1	134	4,7	650	21,3	1.540	66,0	2.466
1981	2,4	365	0,0	0	6,4	347	6,3	694	0,0	18	0,0	0	0,0	6	0,0	62	0,0	29	5,9	417	18,6	1.787	17,5	1.755	57,1	4.154
1982	23,8	2.278	12,1	746	10,5	958	0,0	6	0,0	0	2,7	102	2,5	90	1,1	112	0,0	54	8,3	390	6,5	451	5,5	791	73,0	1.983
1983	27,2	1.968	2,3	142	24,6	2.110	4,8	497	0,0	114	2,5	313	0,0	62	0,0	0	7,2	612	0,0	166	6,7	513	9,3	651	84,6	2.111
Média	21,1	1.805	7,9	703	11,6	964	3,6	344	1,1	94	0,8	56	0,6	43	1,4	117	1,7	139	6,9	491	10,2	935	12,6	1.217	79,4	3.055
D. P.	26,1	2.325	8,2	912	11,1	1.048	3,3	288	3,4	252	1,2	84	1,2	41	3,1	222	2,5	179	8,2	496	7,4	876	7,1	715	35,4	1.595
C. V. (%)	123,9	129	103,4	130	95,8	109	91,2	84	317,0	268	151,8	150	191,4	97	227,2	189	147,5	129	118,6	101	73,0	94	56,0	59	44,6	52
E. P. M.	6,7	600	2,1	236	2,9	271	0,8	74	0,9	65	0,3	22	0,3	11	0,8	57	0,6	46	2,1	128	1,9	226	1,8	185	9,1	412

Quadro 7A – Valores mensais, anuais e médios dos índices de erosividade EI₃₀, em MJ mm ha⁻¹ h⁻¹ ano⁻¹, e KE>25, em MJ ha⁻¹ ano⁻¹, da Estação Tocos, obtidos com base na metodologia para o cálculo da energia cinética proposta por WAGNER e MASSAMBANI (1988), com as respectivas medidas estatísticas de dispersão

Ano	Ja	n.	Fe	V.	Ma	ar.	Al	or.	Ma	io	Jur	1.	Ju	1.	Ag	0.	Se	t.	Οι	ıt.	No	ov.	De	Z.	Тс	otal
Allo	KE>25	EI ₃₀	KE>25	EI ₃₀	KE>25	EI ₃₀	KE>25	EI30	KE>25	EI30	KE>25	EI30	KE>25	EI30	KE>25	EI30	KE>25	EI30	KE>25	EI ₃₀	KE>25	EI ₃₀	KE>25	EI ₃₀	KE>25	EI30
1981	44,3	3.281	4,1	249	1,1	456	0,0	241	0,0	32	3,7	152	0,0	0	1,7	68	0,0	0	3,4	239	14,8	1.270	12,6	1.777	85,7	7.764
1982	1,6	117	12,4	860	5,1	653	0,0	13	0,0	0	2,3	78	0,0	16	0,0	78	2,7	144	16,7	1.275	6,8	357	24,4	2.209	72,0	5.800
1983	27,1	1.740	2,1	193	16,0	1.157	4,6	349	1,5	226	5,3	350	0,0	37	0,0	59	1,2	200	0,0	42	1,5	382	10,4	971	69,6	5.705
1984	13,2	764	3,2	117	3,7	315	17,5	963	8,0	529	0,0	0	0,0	0	0,0	32	2,1	186	0,0	25	4,0	287	33,9	3.031	85,6	6.250
1985	17,5	1.838	32,5	2.101	50,8	3.582	0,0	95	0,0	23	0,0	0	0,0	0	0,0	51	0,0	154	3,4	125	19,2	2.188	35,3	3.980	158,7	14.138
1986	8,0	475	28,6	1.883	9,0	699	1,7	124	3,3	204	0,0	0	0,0	82	0,0	51	0,0	30	0,0	9	13,0	774	49,2	4.279	112,8	8.610
1987	21,0	1.515	17,5	1.252	2,0	213	18,5	2.083	3,5	211	4,9	199	0,0	16	0,0	0	3,6	191	7,2	255	4,1	241	29,0	2.288	111,4	8.465
1988	37,2	2.306	56,7	5.068	14,7	942	1,6	156	2,5	185	0,0	0	0,0	0	0,0	0	0,0	8	9,9	769	5,4	261	9,1	631	137,1	10.327
1993	9,5	717	31,1	2.038	37,9	2.807	20,1	1.437	0,0	31	2,4	123	0,0	0	0,0	0	0,0	120	1,6	141	1,0	318	12,0	1.402	115,5	9.133
1994	34,6	2.556	0,0	24	38,3	4.116	0,0	187	0,0	0	0,0	108	0,0	40	0,0	0	0,0	0	0,0	0	3,8	141	57,8	4.477	134,4	11.648
1995	56,4	4.031	32,7	2.111	8,5	398	0,0	11	0,0	103	2,1	65	0,0	17	0,0	11	4,4	398	5,0	505	2,8	167	25,5	1.912	137,5	9.731
1996	21,9	1.198	33,5	2.770	20,4	1.572	0,0	48	0,0	14	0,0	10	0,0	0	0,0	12	5,0	407	3,0	226	8,4	961	16,9	1.736	109,1	8.955
1997	39,0	2.578	10,4	617	2,3	209	2,5	58	1,1	136	0,0	0	0,0	24	0,0	26	0,0	8	0,0	127	4,5	363	3,3	196	63,1	4.343
1998	63,2	4.948	29,2	2.218	4,5	408	0,0	172	0,0	86	0,0	24	1,4	76	0,0	0	7,2	477	3,9	380	3,7	406	12,8	1.026	125,9	10.221
1999	68,6	6.784	59,6	4.059	16,6	1.776	5,9	696	0,0	31	2,6	185	0,0	0	0,0	0	2,0	118	0,0	0	34,5	3.395	13,6	878	203,5	17.922
Média	30,9	2.323	23,6	1.704	15,4	1.287	4,8	442	1,3	121	1,6	86	0,1	21	0,1	26	1,9	163	3,6	275	8,5	768	23,1	2.053	114,8	9.267
D. P.	20,6	1.823	18,7	1.478	15,4	1.262	7,4	608	2,2	140	1,9	102	0,4	27	0,4	28	2,3	156	4,7	350	8,9	908	15,6	1.344	37,4	3.465
C. V. (%)	66,7	78	79,5	87	99,9	98	153,8	138	169,1	115	123,8	118	387,3	134	387,3	110	121,7	96	130,1	127	104,3	118	67,7	65	32,6	37
E. P. M.	5,3	471	4,8	382	4,0	326	1,9	157	0,6	36	0,5	26	0,1	7	0,1	7	0,6	40	1,2	90	2,3	234	4,0	347	9,7	895

Quadro 8A – Valores mensais, anuais e médios dos índices de erosividade EI₃₀, em MJ mm ha⁻¹ h⁻¹ ano⁻¹, e KE>25, em MJ ha⁻¹ ano⁻¹, da Estação Tanguá, obtidos com base na metodologia para o cálculo da energia cinética proposta por WAGNER e MASSAMBANI (1988), com as respectivas medidas estatísticas de dispersão

Ano	Ja	n.	Fe	v.	M	ar.	At	or.	Ма	io	Ju	1.	Ju	l.	Ag	0.	Se	t.	Ou	ıt.	No	v.	De	Z.	Тс	otal
Allo	KE>25	EI30	KE>25	EI30	KE>25	EI ₃₀	KE>25	EI30	KE>25	EI ₃₀	KE>25	EI30	KE>25	EI30	KE>25	EI ₃₀	KE>25	EI30	KE>25	EI30	KE>25	EI30	KE>25	EI ₃₀	KE>25	5 EI ₃₀
1980	6,4	619	4,4	423	0,0	0	3,0	390	4,4	321	0,0	40	0,0	6	0,0	31	0,0	46	0,0	144	1,1	288	13,5	772	32,8	3.082
1981	18,3	1.424	5,3	240	5,9	368	14,6	1.088	0,0	0	0,0	0	0,0	54	0,0	11	0,0	8	0,0	7	5,3	498	26,1	2.795	75,4	6.494
1982	10,5	894	5,5	466	10,1	713	1,2	150	1,7	82	0,0	26	4,9	364	1,3	184	0,0	0	13,8	883	5,6	450	1,6	395	56,2	4.606
1983	24,4	2.992	0,0	76	20,7	1.557	6,5	558	2,0	198	2,4	225	0,0	59	0,0	0	0,0	271	1,1	128	13,7	1.003	3,4	417	74,2	7.485
1984	3,0	231	0,0	0	13,0	904	6,3	426	13,4	1.473	0,0	0	0,0	0	0,0	0	0,0	0	0,0	0	0,0	15	1,2	137	36,9	3.185
1985	0,0	522	8,4	546	27,8	1.906	4,0	485	0,0	0	3,7	326	0,0	12	1,7	208	0,0	184	0,0	0	3,6	191	11,0	1.098	60,3	5.479
1986	19,2	1.432	29,5	2.152	11,3	1.033	1,4	380	0,0	68	0,0	0	0,0	175	0,0	0	1,3	120	1,1	110	3,3	339	18,5	1.516	85,6	7.325
1987	3,6	363	21,1	1.884	2,0	289	15,1	869	0,0	117	0,0	26	13,4	865	0,0	7	0,0	18	0,0	24	0,0	60	15,4	1.281	70,6	5.806
1988	9,2	534	57,0	4.924	0,0	138	1,8	193	0,0	108	0,0	45	0,0	172	0,0	14	0,0	0	8,3	751	6,6	714	14,4	1.158	97,2	8.751
1989	3,3	212	28,6	1.669	10,9	921	0,0	313	0,0	84	4,2	429	0,0	116	0,0	15	0,0	90	0,0	70	0,0	129	4,8	380	51,7	4.430
1990	2,4	134	11,8	901	11,3	896	32,0	2.788	0,0	98	0,0	20	4,1	216	0,0	48	0,0	92	1,4	154	9,4	1.133	0,0	76	72,4	6.555
1991	4,1	869	17,5	1.342	13,1	1.151	10,9	580	0,0	77	1,5	201	0,0	0	0,0	5	1,3	287	0,0	110	0,0	122	20,4	1.426	68,9	6.171
1992	17,0	1.300	5,4	435	0,0	0	12,4	829	0,0	0	0,0	0	0,0	0	0,0	8	1,7	430	3,3	269	15,4	1.569	0,0	222	55,1	5.063
1993	3,8	148	16,0	1.153	17,4	1.254	0,0	0	4,1	285	0,0	26	0,0	0	0,0	0	0,0	0	0,0	0	2,3	291	8,7	773	52,2	3.929
1994	4,6	341	1,0	48	8,0	1.170	1,7	540	4,3	745	3,4	242	0,0	45	0,0	37	0,0	15	0,0	0	1,0	177	8,1	445	32,1	3.804
1995	12,4	1.070	17,1	1.296	6,6	446	0,0	82	12,3	1.093	0,0	17	0,0	75	0,0	50	0,0	31	0,0	169	14,7	1.010	0,0	0	63,2	5.341
Média	8,9	818	14,3	1.097	9,9	797	6,9	605	2,6	297	1,0	102	1,4	135	0,2	39	0,3	100	1,8	176	5,1	499	9,2	806	61,5	5.469
D. P.	7,3	732	14,8	1.225	7,8	557	8,5	652	4,3	431	1,6	137	3,5	220	0,5	64	0,6	129	3,9	263	5,4	457	8,2	725	18,3	1.616
C. V. (%)	82,5	90	103,6	112	78,6	70	122,7	108	164,2	145	163,5	135	253,8	163	275,6	165	217,2	130	213,0	149	106,2	91	89,5	90	29,7	30
E. P. M.	1,8	183	3,7	306	1,9	139	2,1	163	1,1	108	0,4	34	0,9	55	0,1	16	0,1	32	1,0	66	1,4	114	2,1	181	4,6	404

Quadro 9A – Valores mensais, anuais e médios dos índices de erosividade EI₃₀, em MJ mm ha⁻¹ h⁻¹ ano⁻¹, e KE>25, em MJ ha⁻¹ ano⁻¹, da Estação Escola União, obtidos com base na metodologia para o cálculo da energia cinética proposta por WAGNER e MASSAMBANI (1988), com as respectivas medidas estatísticas de dispersão

Ano	Ja	n.	Fe	ev.	М	ar.	At	or.	Ma	iio	Ju	n.	Ju	1.	Ag	0.	Se	t.	Ou	ıt.	No	ov.	De	ez.	Тс	otal
Allo	KE>25	EI ₃₀	KE>25	EI30	KE>25	EI30	KE>25	EI ₃₀	KE>25	EI ₃₀	KE>25	EI30	KE>25	EI ₃₀	KE>25	EI30	KE>25	EI ₃₀	KE>25	EI30	KE>25	EI ₃₀	KE>25	EI ₃₀	KE>25	EI30
1977	51,2	4.391	0,0	0	55,5	4.597	0,0	493	0,0	0	0,0	0	0,0	0	0,0	0	1,2	196	0,0	0	0,0	237	29,1	2.555	136,9	12.468
1978	33,7	2.620	26,4	1.885	3,7	295	10,3	947	2,1	342	0,0	54	0,0	0	0,0	60	0,0	0	0,0	80	10,9	1.060	12,8	884	100,0	8.227
1979	5,7	905	17,4	1.793	20,6	1.178	6,3	302	0,0	60	0,0	115	4,9	544	5,1	333	0,0	36	4,4	399	10,6	921	4,8	567	79,7	7.153
1980	29,3	2.939	13,3	1.433	0,0	0	12,0	1.170	0,0	113	8,1	452	2,3	120	0,0	93	0,0	15	0,0	317	0,0	270	30,5	1.950	95,5	8.873
1981	6,5	449	8,0	671	6,8	457	0,0	126	0,0	0	0,0	0	0,0	95	0,0	50	0,0	7	1,5	97	24,8	2.271	43,8	3.895	91,3	8.118
1982	21,7	2.201	19,1	2.182	13,3	919	3,1	329	0,0	0	1,4	29	1,7	195	5,2	349	0,0	20	4,9	427	14,8	838	50,3	4.966	135,5	12.455
1983	29,2	2.361	7,8	625	26,3	2.633	3,6	324	1,7	259	7,5	597	0,0	128	0,0	35	0,0	221	0,0	171	19,9	1.455	23,1	1.963	119,0	10.772
1984	6,0	481	3,8	172	1,8	255	8,0	570	2,7	354	0,0	4	0,0	22	0,0	13	0,0	9	0,0	0	0,0	23	11,3	692	33,6	2.593
1985	24,9	2.020	87,3	7.179	29,1	2.459	19,9	1.497	5,2	258	0,0	41	0,0	0	1,2	281	14,0	921	6,2	493	11,5	846	2,0	261	201,3	16.256
1986	22,8	1.953	16,6	1.229	27,2	2.103	3,7	421	0,0	95	0,0	0	0,0	130	0,0	33	6,0	349	2,5	123	2,0	221	42,3	3.537	123,0	10.194
1987	29,3	1.932	7,5	698	16,0	1.042	1,0	414	0,0	99	0,0	295	0,0	12	0,0	11	0,0	114	5,4	309	0,0	59	12,8	1.261	71,9	6.245
1988	53,4	4.157	87,2	9.806	1,1	305	25,8	2.951	5,2	585	3,2	213	2,3	258	0,0	0	0,0	26	4,4	594	6,0	1.094	62,7	6.471	251,3	26.461
1989	27,2	1.779	39,1	2.559	21,1	1.694	12,9	1.238	9,3	743	6,4	748	2,3	279	0,0	70	0,0	139	0,0	99	9,2	544	0,0	202	127,4	10.094
1990	4,9	410	26,4	2.069	19,4	1.491	5,8	413	12,7	907	0,0	105	0,0	41	0,0	72	0,0	238	0,0	199	36,6	3.748	2,2	404	107,8	10.097
1991	2,7	1.169	14,2	1.205	22,3	1.487	13,9	1.037	0,0	198	1,2	74	0,0	58	0,0	20	2,8	287	0,0	210	3,4	398	25,4	2.575	85,9	8.717
1992	23,0	1.555	10,2	553	2,3	215	2,8	345	0,0	16	0,0	0	2,5	330	1,9	55	2,8	650	4,2	657	16,3	1.630	11,8	975	77,8	6.980
1993	17,2	1.290	30,3	2.323	32,9	2.193	8,0	555	0,0	61	0,0	26	0,0	18	0,0	0	0,0	98	0,0	50	15,5	1.092	14,4	1.596	118,3	9.303
1994	12,3	869	22,7	1.466	45,6	4.480	3,7	487	1,1	554	4,0	374	0,0	0	0,0	0	0,0	34	2,6	314	7,1	640	44,6	3.052	143,7	12.270
1995	32,3	2.790	29,1	2.166	16,4	1.145	3,0	123	23,8	2.095	0,0	33	0,0	9	0,0	47	0,0	293	4,8	502					109,4	9.203
Mádia	22.8	1 000	24.6	2 106	10.0	1 524	76	722	3.4	255	1.7	166	0.8	110	0.7	80	1.4	102	2.1	265	10.5	064	22.5	2 100	110 1	10 502
D D	14.5	1.909	24,0	2.100	15.0	1.324	7,0	123	5,4	400	2.9	224	0,8	147	1.6	111	2.4	241	2,1	203	10,5	904	10.7	1.747	47.0	10.302
D. P.	14,5	1.141	24,3	2.412	15,2	1.328	0,9	000	0,1	499	2,8 166 7	125	1,4	14/	1,0	111	3,4 242 2	241 125	2,5	202	9,8 04.0	910	18,/	1./4/	4/,ð	4.840
C. V. (%)	03,8	00	98,8	115	79,9	8/ 205	91,0	92	181,0	141	100,/	135	100,8	124	233,4	139	243,3	125	108,6	/6	94,0	94	/9,6	83 412	40,5	40
E. P. M.	3,3	262	5,6	553	3,5	305	1,6	153	1,4	114	0,6	51	0,3	54	0,4	26	0,8	55	0,5	46	2,3	215	4,4	412	11,0	1.112

Quadro 10A – Valores mensais, anuais e médios dos índices de erosividade EI₃₀, em MJ mm ha⁻¹ h⁻¹ ano⁻¹, e KE>25, em MJ ha⁻¹ ano⁻¹, da Estação Cachoeiras de Macacu, obtidos com base na metodologia para o cálculo da energia cinética proposta por WAGNER e MASSAMBANI (1988), com as respectivas medidas estatísticas de dispersão

Ano	Ja	n.	Fe	ev.	Ma	ar.	A	br.	Ma	io	Jur	1.	Ju	1.	Ag	0.	Se	t.	0	ut.	Nc	ov.	De	Z.	Тс	otal
Allo	KE>25	EI30	KE>25	EI30	KE>25	EI ₃₀	KE>25	EI30	KE>25	EI ₃₀	KE>25	EI30	KE>25	EI30	KE>25	EI30	KE>25	EI ₃₀	KE>25	EI30	KE>25	EI ₃₀	KE>25	EI ₃₀	KE>25	EI30
1979	27,6	2.618	5,1	975	8,8	574	15,3	1.074	2,6	337	0,0	20	11,7	688	2,9	376	0,0	199	11,4	1.198	17,3	1.658	33,8	3.701	136,5	13.420
1980	10,3	0	17,7	1.022	8,1	481	14,1	1.141	2,1	87	1,1	147	0,0	28	0,0	58	0,0	77	0,0	40	13,0	1.922	79,3	6.185	145,7	11.189
1981	2,6	230	14,1	1.023	11,6	1.130	12,6	1.139	1,5	126	0,0	0	0,0	79	0,0	0	0,0	0	0,0	7	26,5	2.255	42,0	4.170	110,9	10.160
1982	7,2	839	22,4	1.682	2,7	304	1,6	110	0,0	18	0,0	39	0,0	0	0,0	186	0,0	44	1,2	143	0,0	0	3,7	306	38,7	3.670
1983	5,3	421	15,4	1.038	7,0	695	6,1	428	0,0	154	4,9	534	0,0	87	0,0	0	1,3	483	1,2	162	12,4	1.050	17,2	1.378	70,8	6.431
1984	11,5	599	3,7	135	7,4	567	13,7	1.112	0,0	31	0,0	0	0,0	8	0,0	83	0,0	25	0,0	0	2,7	477	8,3	682	47,3	3.719
1985	22,9	2.272	26,6	1.797	21,3	2.028	11,5	796	0,0	14	0,0	0	0,0	0	0,0	157	1,1	295	2,5	281	8,6	767	3,7	286	98,1	8.693
1986	24,9	1.714	3,8	393	24,3	1.445	12,5	1.150	1,1	124	0,0	0	0,0	80	0,0	23	1,1	227	6,3	410	5,3	511	43,6	3.835	122,8	9.912
1987	23,4	1.883	11,1	882	12,2	777	6,8	601	2,5	287	0,0	88	0,0	15	0,0	11	0,0	10	2,4	164	1,0	215	29,4	2.904	88,7	7.836
1988	15,1	804	31,5	3.169	6,3	346	2,8	344	7,2	609	0,0	53	0,0	72	0,0	14	0,0	11	4,9	506	2,7	594	12,1	1.030	82,6	7.553
1989	21,7	1.484	19,0	1.767	11,6	941	5,2	824	0,0	165	1,0	311	1,2	130	0,0	80	0,0	196	0,0	27	0,0	0	4,3	827	64,1	6.752
1990	0,0	75	14,6	1.159	24,1	1.477	26,5	2.667	3,5	433	0,0	0	0,0	125	0,0	13	0,0	221	15,3	1.166	22,5	1.899	3,7	368	110,1	9.601
1991	2,6	1.026	35,4	2.093	16,0	1.298	8,0	857	0,0	167	3,2	146	0,0	39	0,0	35	1,1	414	1,1	348	0,0	241	19,9	1.484	87,3	8.149
1992	10,9	1.055	12,5	598	7,9	503	27,7	2.002	2,5	143	1,5	87	0,0	109	0,0	11	2,9	410	14,1	1.101	11,8	1.325	9,5	898	101,1	8.243
1993	13,4	1.001	34,8	2.745	26,1	1.999	0,0	21	4,3	219	0,0	0	0,0	15	0,0	17	3,3	189	8,1	531	5,8	578	8,9	849	104,6	8.165
Média	13,3	1.068	17,8	1.365	13,0	971	11,0	951	1,8	194	0,8	95	0,9	98	0,2	71	0,7	187	4,6	406	8,6	900	21,3	1.927	94,0	8.233
D. P.	9,0	789	10,5	843	7,5	568	8,1	686	2,1	164	1,5	149	3,0	169	0,7	102	1,1	160	5,3	424	8,5	743	21,2	1.792	30,4	2.557
C. V. (%)	67,6	74	58,8	62	57,7	59	74,1	72	113,6	84	185,5	156	349,6	172	387,3	143	151,7	86	116,5	105	97,9	83	99,6	93	32,3	31
E. P. M.	2,3	204	2,7	218	1,9	147	2,1	177	0,5	42	0,4	38	0,8	44	0,2	26	0,3	41	1,4	110	2,2	192	5,5	463	7,8	660

Quadro 11A – Valores mensais, anuais e médios dos índices de erosividade EI₃₀, em MJ mm ha⁻¹ h⁻¹ ano⁻¹, e KE>25, em MJ ha⁻¹ ano⁻¹, da Estação Posto Garrafão, obtidos com base na metodologia para o cálculo da energia cinética proposta por WAGNER e MASSAMBANI (1988), com as respectivas medidas estatísticas de dispersão

Ano	Ja	n.	Fe	ev.	Ma	ar.	Al	or.	Ma	io	Ju	n.	Ju	ıl.	Ag	;0 .	Se	et.	Ou	ıt.	No	v.	De	ez.	Тс	otal
	KE>25	EI ₃₀	KE>25	EI30	KE>25	EI ₃₀	KE>25	EI ₃₀	KE>25	EI30	KE>25	EI30	KE>25	EI30	KE>25	EI30	KE>25	EI30	KE>25	EI ₃₀	KE>25	EI30	KE>25	EI30	KE>25	EI30
1980	6,5	1.289	5,0	285	19,7	1.400	14,1	1.154	3,6	192	1,3	91	1,1	216	3,3	285	0,0	88	2,5	755	2,6	384	43,3	2.560	103,0	8.699
1981	50,1	4.917	46,5	5.464	70,0	5.941	17,0	1.363	0,0	50	0,0	36	1,1	106	0,0	51	1,8	116	0,0	235	11,2	905	75,7	7.012	273,5	26.198
1982	12,4	1.216	3,6	774	48,5	3.837	12,8	1.156	0,0	72	19,6	2.040	0,0	80	6,2	768	0,0	18	0,0	312	3,0	226	51,5	4.084	157,6	14.585
1983	20,3	1.386	52,5	4.266	54,9	4.647	4,5	809	4,7	557	2,5	482	0,0	146	0,0	20	2,3	654	3,8	623	10,8	825	17,9	1.335	174,0	15.749
1984	19,6	1.221	10,7	495	22,9	2.681	4,4	538	17,4	943	0,0	22	0,0	121	1,7	284	0,0	78	3,4	410	10,5	958	15,1	1.359	105,7	9.110
1985	28,9	3.376	20,3	1.595	18,1	1.988	13,5	1.160	1,0	67	0,0	7	0,0	166	0,0	0	0,0	258	6,0	374	19,1	2.240	0,0	121	107,0	11.352
1986	6,2	527	43,2	4.189	23,4	1.710	15,6	1.058	1,2	189	0,0	0	17,7	2.118	0,0	146	2,2	593	3,1	273	8,6	734	51,8	5.089	173,1	16.626
1987	37,5	3.032	11,1	813	25,1	2.630	8,5	1.165	1,8	205	1,5	159	0,0	32	0,0	82	0,0	124	2,1	366	45,9	3.823	18,3	1.454	151,9	13.884
1988	15,2	901	123,1	11.993	6,9	732	23,0	2.705	13,1	1.082	0,0	199	0,0	159	0,0	12	0,0	146	10,2	1.472	24,3	2.608	49,8	3.734	265,5	25.741
1989	20,5	1.357	44,0	3.794	83,5	6.401	1,2	522	3,0	516	8,2	1.390	2,0	237	0,0	70	0,0	176	1,1	190	0,0	82	10,5	1.721	174,0	16.457
1990	9,7	579	47,5	3.964	7,9	464	33,5	3.146	3,0	370	0,0	185	0,0	54	0,0	304	0,0	255	12,6	1.275	47,7	4.216	29,9	2.749	191,9	17.562
1991	89,7	9.851	38,0	2.706	23,5	2.242	20,2	2.196	4,7	663	2,3	391	0,0	67	0,0	3	7,0	1.352	2,5	252	10,1	1.156	45,8	3.528	243,7	24.406
1992	15,8	1.627	1,6	163	28,1	1.803	9,1	1.115	0,0	99	0,0	0	0,0	62	0,0	36	1,3	1.024	4,2	867	14,0	3.172	8,2	1.106	82,3	11.073
1993	28,9	2.418	28,6	2.486	67,9	5.362	6,6	397	1,8	100	0,0	13	0,0	7	0,0	0	6,2	1.399	3,6	476	24,8	1.676	4,9	319	173,2	14.653
1994	0,0	0	9,4	769	62,4	6.548	18,0	2.482	5,4	1.268	0,0	0	0,0	0	0,0	21	0,0	242	20,0	2.029	31,1	2.877	39,3	3.591	185,6	19.828
1995	29,7	2.640	22,0	1.870	18,9	1.233	0,0	327	3,5	472	4,6	443	0,0	30	0,0	52	0,0	0	2,2	343	20,4	1.709	60,1	4.557	161,4	13.674
Média	24,4	2.271	31,7	2.852	36,4	3.101	12,6	1.331	4,0	428	2,5	341	1,4	225	0,7	133	1,3	408	4,8	641	17,8	1.724	32,6	2.770	170,2	16.225
D. P.	21,6	2.374	30,1	2.957	24,2	2.063	8,8	854	4,8	388	5,1	573	4,4	510	1,7	200	2,2	465	5,3	527	14,2	1.296	22,5	1.883	55,9	5.458
C. V. (%)	88,3	105	94,9	104	66,7	67	69,4	64	118,7	91	203,7	168	321,8	227	245,2	150	172,9	114	109,3	82	80,1	75	69,1	68	32,8	34
E. P. M.	5,4	594	7,5	739	6,1	516	2,2	213	1,2	97	1,3	143	1,1	127	0,4	50	0,6	116	1,3	132	3,6	324	5,6	471	14,0	1.364

Quadro 12A – Valores mensais, anuais e médios dos índices de erosividade EI₃₀, em MJ mm ha⁻¹ h⁻¹ ano⁻¹, e KE>25, em MJ ha⁻¹ ano⁻¹, da Estação Rio Mole, obtidos com base na metodologia para o cálculo da energia cinética proposta por WAGNER e MASSAMBANI (1988), com as respectivas medidas estatísticas de dispersão

Ano	Jai	n.	Fe	V.	Ma	ar.	Al	or.	Ma	iio	Ju	n.	Ju	1.	Ag	0.	Se	t.	Οι	ıt.	No	ov.	De	Z.	То	otal
Allo	KE>25	EI30	KE>25	EI30	KE>25	EI ₃₀	KE>25	EI30	KE>25	EI ₃₀	KE>25	EI_{30}	KE>25	EI30	KE>25	EI30	KE>25	EI ₃₀	KE>25	EI30	KE>25	EI30	KE>25	EI ₃₀	KE>25	EI30
1980	12,9	981	0,0	0	7,6	479	0,0	84	2,5	107	2,6	187	0,0	93	1,4	100	0,0	102	2,9	278	1,2	469	9,1	536	40,3	3.417
1981	2,9	288	2,6	123	2,2	91	0,0	0	0,0	0	0,0	19	0,0	44	0,0	79	0,0	14	0,0	21	0,0	44	17,7	1.548	25,4	2.272
1982	1,9	315	0,0	36	35,8	2.394	7,2	537	0,0	0	0,0	62	5,0	563	0,0	25	0,0	67	0,0	47	0,0	79	12,8	1.420	62,7	5.546
1983	1,2	26	3,5	164	13,8	1.029	5,0	407	3,6	298	1,3	97	0,0	94	0,0	9	0,0	351	0,0	132	7,8	461	38,9	3.574	75,1	6.642
1984	5,9	601	4,7	184	0,0	64	0,0	110	5,1	488	0,0	18	0,0	8	0,0	45	0,0	0	1,1	87	0,0	0	1,5	196	18,3	1.801
1985	6,4	877	7,3	762	12,1	944	3,9	455	0,0	88	0,0	63	0,0	0	0,0	97	0,0	61	5,3	346	0,0	224	11,1	754	46,2	4.672
1986	7,6	405	37,5	2.425	4,1	659	1,3	273	5,6	310	0,0	0	7,4	802	0,0	54	2,0	154	0,0	79	2,4	159	30,9	2.575	98,7	7.895
1987	3,3	147	8,7	741	1,2	223	24,4	2.207	0,0	96	28,3	2.098	0,0	37	0,0	24	0,0	67	0,0	101	2,1	108	4,8	410	72,8	6.259
1988	5,1	271	26,2	1.876	0,0	54	16,4	1.707	6,3	480	12,0	972	6,9	690	0,0	0	0,0	21	4,7	430	19,4	1.415	10,2	567	107,3	8.485
1989	10,2	617	20,5	1.296	2,3	354	11,0	946	2,6	225	16,0	1.564	2,8	438	0,0	41	1,9	253	1,2	160	0,0	172	0,0	67	68,6	6.132
1990	0,0	52	8,8	395	17,3	1.956	49,0	7.125	17,5	1.754	0,0	129	2,3	129	0,0	82	0,0	230	4,9	400	21,9	2.722	0,0	143	121,9	15.116
1991	4,8	646	3,5	324	24,5	2.726	3,1	256	1,0	231	0,0	95	2,1	129	0,0	23	0,0	25	0,0	0	0,0	84	1,5	151	40,5	4.688
1992	0,0	265	2,1	61	2,3	85	15,2	881	0,0	15	0,0	31	3,7	683	1,1	72	0,0	346	5,2	449	1,7	485	0,0	53	31,3	3.424
1993	3,7	234	15,2	1.166	4,5	248	3,2	288	7,5	679	0,0	90	2,5	73	1,5	153	1,4	195	3,3	261	0,0	37	2,4	192	45,4	3.618
1994	1,8	79	0,0	0	12,1	889	10,8	665	1,1	291	20,2	1.545	2,4	120	0,0	0	0,0	164	0,0	0	9,2	461	2,7	205	60,4	4.418
Média	4,5	387	9,4	637	9,3	813	10,0	1.063	3,5	337	5,4	465	2,4	260	0,3	53	0,4	137	1,9	186	4,4	461	9,6	826	61,0	5.626
D. P.	3,7	295	11,0	748	10,3	876	12,9	1.785	4,6	439	9,2	708	2,5	287	0,6	43	0,8	117	2,2	161	7,2	719	11,7	1.038	30,4	3.251
C. V. (%)	81,3	76	117,2	117	110,0	108	128,6	168	131,8	130	171,7	152	107,3	110	209,1	81	210,2	86	115,6	86	164,8	156	122,4	126	49,9	58
E. P. M.	1,0	76	2,8	193	2,6	226	3,3	461	1,2	113	2,4	183	0,7	74	0,1	11	0,2	30	0,6	42	1,9	186	3,0	268	7,9	839

Quadro 13A – Valores mensais, anuais e médios dos índices de erosividade EI₃₀, em MJ mm ha⁻¹ h⁻¹ ano⁻¹, e KE>25, em MJ ha⁻¹ ano⁻¹, da Estação Eletrobrás, obtidos com base na metodologia para o cálculo da energia cinética proposta por WAGNER e MASSAMBANI (1988), com as respectivas medidas estatísticas de dispersão

Ano	Ja	n.	Fe	v.	Ma	ar.	At	or.	Ма	io	Ju	n.	Ju	1.	Ag	<u>;</u> 0.	Se	t.	Οι	ıt.	No	v.	De	ez.	Тс	otal
Allo	KE>25	EI ₃₀	KE>25	EI ₃₀	KE>25	EI ₃₀	KE>25	EI30	KE>25	EI30	KE>25	EI30	KE>25	EI30	KE>25	EI30	KE>25	EI30	KE>25	EI ₃₀	KE>25	EI30	KE>25	EI30	KE>25	5 EI ₃₀
1979	16,6	1.095	3,4	215	2,4	161	4,8	474	0,0	211	0,0	19	0,0	187	4,6	466	0,0	182	0,0	0	0,0	144	19,1	1.606	50,8	4.760
1980	12,1	778	0,0	263	2,3	205	3,6	272	0,0	21	1,2	158	1,2	118	0,0	93	0,0	47	8,5	704	12,9	588	14,0	1.172	55,8	4.418
1981	14,5	1.333	1,2	100	8,7	766	6,9	624	0,0	27	10,3	791	1,7	152	4,5	339	0,0	8	0,0	86	10,1	612	30,1	2.909	87,9	7.747
1982	1,2	375	0,0	92	1,0	121	1,0	210	0,0	0	0,0	33	0,0	64	0,0	36	0,0	0	5,1	388	5,1	276	2,9	563	16,3	2.157
1983	0,0	0	0,0	0	13,7	1.324	2,4	219	1,8	210	2,1	256	0,0	33	0,0	0	1,6	306	0,0	88	11,8	812	23,0	1.505	56,5	4.754
1984	10,3	742	0,0	0	5,8	448	8,9	446	9,0	473	0,0	0	0,0	40	2,2	100	2,3	88	0,0	0	0,0	0	0,0	25	38,4	2.362
1985	19,1	1.654	12,2	916	14,2	853	8,3	871	0,0	13	2,5	277	0,0	0	1,3	264	2,7	150	4,7	247	2,3	123	15,5	836	82,8	6.203
1986	0,0	15	28,2	2.040	12,5	1.133	2,4	597	0,0	130	0,0	8	2,9	633	0,0	20	0,0	216	7,8	583	0,0	49	5,2	266	59,1	5.690
1987	6,0	469	8,1	1.177	0,0	64	14,8	1.536	1,6	196	1,6	208	0,0	89	0,0	7	1,5	103	1,2	156	0,0	22	9,5	870	44,3	4.897
1988	4,8	203	41,7	3.755	9,5	779	13,5	1.228	1,8	197	1,2	336	1,3	90	0,0	0	0,0	32	0,0	260	4,8	465	1,6	212	80,2	7.557
1989	4,4	293	17,6	1.000	0,0	147	2,0	434	0,0	33	3,9	1.071	0,0	225	0,0	139	0,0	100	0,0	21	7,2	455	2,3	321	37,5	4.237
1990	0,0	82	2,2	100	0,0	76	14,8	1.323	9,5	732	0,0	256	0,0	0	0,0	51	0,0	112	10,3	1.054	9,5	513	0,0	140	46,2	4.438
1991	4,3	336	13,2	1.207	2,3	471	2,5	624	1,1	499	0,0	76	2,3	127	0,0	8	0,0	83	0,0	95	1,1	115	16,8	1.114	43,7	4.754
1992	24,8	1.710	0,0	0	3,6	144	1,6	318	0,0	0	0,0	20	0,0	93	4,6	414	2,5	187	2,4	282	6,4	610	0,0	120	45,9	3.898
1993	0,0	0	0,0	91	16,0	982	6,0	523	0,0	73	0,0	71	0,0	0	0,0	14	0,0	36	0,0	162	5,8	270	15,6	1.194	43,4	3.416
1994	12,7	811	1,4	155	9,9	1.512	0,0	139	1,5	414	7,1	833	3,3	185	0,0	27	0,0	89	0,0	19	0,0	375	3,1	270	38,9	4.830
1995	7,7	367	3,4	134	0,0	103	0,0	38	3,7	189	0,0	42	0,0	25	0,0	0	0,0	0	1,6	284	5,8	559	10,6	778	32,7	2.519
Média	8,1	604	7,8	661	6,0	546	5,5	581	1,8	201	1,8	262	0,7	121	1,0	116	0,6	102	2,4	261	4,9	352	9,9	818	50,6	4.626
D. P.	7,5	559	11,8	991	5,7	481	5,0	429	3,0	212	2,9	326	1,2	149	1,8	155	1,0	84	3,5	286	4,4	248	9,1	737	18,7	1.581
C. V. (%)	92,5	93	151,3	150	95,0	88	90,5	74	169,5	105	165,2	124	153,6	123	177,3	134	165,7	82	143,1	110	90,5	70	91,7	90	36,9	34
E. P. M.	1,8	136	2,9	240	1,4	117	1,2	104	0,7	51	0,7	79	0,3	36	0,4	38	0,2	20	0,8	69	1,1	60	2,2	179	4,5	383

Quadro 14A – Valores mensais, anuais e médios dos índices de erosividade EI₃₀, em MJ mm ha⁻¹ h⁻¹ ano⁻¹, e KE>25, em MJ ha⁻¹ ano⁻¹, da Estação Capela Mayrink, obtidos com base na metodologia para o cálculo da energia cinética proposta por WAGNER e MASSAMBANI (1988), com as respectivas medidas estatísticas de dispersão

Ano	Ja	n.	Fe	ev.	М	ar.	A	br.	Ma	io	Ju	n.	Ju	ıl.	Ag	<u>3</u> 0.	Se	t.	Ou	ıt.	No	V.	De	z.	Тс	otal
	KE>25	EI ₃₀	KE>25	EI30	KE>25	EI ₃₀	KE>25	EI30	KE>25	EI ₃₀	KE>25	EI30	KE>25	EI30	KE>25	EI30	KE>25	EI ₃₀	KE>25	EI ₃₀	KE>25	EI30	KE>25	EI ₃₀	KE>25	EI30
1980	9,5	864	2,7	547	3,7	614	2,4	536	0,0	84	4,8	676	0,0	467	0,0	474	0,0	455	0,0	839	4,3	942	7,6	492	34,9	6.989
1981	12,8	1.340	0,0	0	23,4	1.708	6,4	721	12,8	795	0,0	0	2,2	418	6,6	483	0,0	301	0,0	83	14,6	994	39,7	3.557	118,4	10.398
1982	2,6	872	30,7	2.892	0,0	246	11,0	788	0,0	336	0,0	73	1,3	378	2,6	459	0,0	118	10,8	857	7,7	434	4,6	1.226	71,4	8.680
1983	16,8	1.388	4,1	244	38,4	4.228	4,2	372	3,1	543	4,6	614	0,0	72	0,0	110	0,0	694	1,5	274	17,5	1.882	14,0	1.313	104,2	11.734
1984	0,0	173	0,0	0	1,2	436	11,6	1.095	2,8	237	0,0	26	0,0	147	0,0	219	0,0	186	0,0	345	0,0	97	0,0	179	15,7	3.139
1985	7,9	1.391	6,7	672	26,0	2.132	31,5	3.397	0,0	167	2,5	372	0,0	94	0,0	235	0,0	0	0,0	34	0,0	281	8,2	1.090	82,9	9.865
1986	0,0	43	13,7	847	31,0	3.447	9,5	1.225	6,1	888	0,0	0	13,6	1.756	0,0	49	0,0	330	0,0	91	7,9	1.035	1,7	697	83,8	10.409
1987	20,8	1.423	22,0	2.494	4,3	530	12,3	1.261	4,2	557	0,0	1.026	0,0	71	0,0	91	0,0	271	0,0	322	0,0	181	4,8	1.013	68,4	9.239
1988	8,8	484	111,4	12.770	2,1	560	8,8	923	6,4	478	0,0	327	0,0	505	0,0	29	0,0	202	26,7	2.284	1,0	572	3,8	516	169,0	19.648
1989	11,2	686	4,6	258	1,4	320	0,0	221	5,0	707	15,1	2.668	4,8	1.027	0,0	65	0,0	205	0,0	374	6,3	542	5,4	575	53,8	7.651
1990	1,8	237	0,0	20	8,3	528	61,4	7.255	10,9	1.282	0,0	165	10,0	1.256	0,0	265	2,1	819	14,5	1.041	1,9	254	12,7	900	123,7	14.022
1991	3,0	540	12,2	1.338	7,7	1.222	12,6	907	0,0	803	11,3	1.068	0,0	122	0,0	317	0,0	120	0,0	0	5,2	506	16,5	1.220	68,5	8.163
1992	26,5	2.497	4,1	267	7,5	498	9,0	871	0,0	39	0,0	0	1,0	931	3,0	328	1,1	671	1,4	372	8,6	1.934	0,0	196	62,1	8.604
1993	7,6	599	15,8	1.024	41,2	3.464	21,0	1.976	5,3	778	0,0	281	0,0	102	0,0	357	0,0	24	2,7	622	6,5	342	12,5	1.567	112,6	11.137
1994	0,0	0	7,7	498	22,9	3.461	2,7	728	4,0	620	24,5	2.143	4,0	678	0,0	396	0,0	65	0,0	35	0,0	868	1,1	288	66,9	9.780
1995	6,9	635	6,4	501	9,3	507	0,0	0	0,0	0	0,0	0	0,0	84	18,3	1.558	0,0	699	1,5	663	4,9	707	0,0	461	47,2	5.815
Média	8,5	823	15,1	1.523	14,3	1.494	12,8	1.392	3,8	520	3,9	590	2,3	507	1,9	340	0,2	322	3,7	515	5,4	723	8,3	956	80,2	9.705
D. P.	7,7	655	27,0	3.115	14,0	1.393	15,2	1.750	4,0	357	7,1	797	4,1	503	4,7	360	0,6	266	7,5	573	5,2	547	9,9	813	38,1	3.646
C. V. (%)	90,9	80	178,7	204	97,9	93	119,1	126	104,6	69	181,4	135	175,9	99	248,5	106	290,3	82	202,0	111	96,1	76	119,7	85	47,5	38
E. P. M.	1,9	164	6,8	779	3,5	348	3,8	437	1,0	89	1,8	199	1,0	126	1,2	90	0,1	66	1,9	143	1,3	137	2,5	203	9,5	911

APÊNDICE B

Quadro 1B – Distribuição percentual mensal de precipitação, dos índices de erosividade e do coeficiente de chuva – Estação Manuel Duarte

	Precipitação				KE>25			
Mês	(mm)	(%)	$R_{C}(mm)$	(%)	(*)	(%)	EI ₃₀ (**)	(%)
Jan.	224,5	20,5	46,1	32,7	9,0	21,3	945	22,9
Fev.	158,0	14,4	22,8	16,2	3,5	8,3	469	11,4
Mar.	163,4	14,9	24,4	17,3	8,9	21,2	783	19,0
Abr.	96,9	8,9	8,6	6,1	4,6	10,9	560	13,6
Maio	21,0	1,9	0,4	0,3	0,0	0,0	15	0,4
Jun.	21,5	2,0	0,4	0,3	0,0	0,0	19	0,5
Jul.	15,6	1,4	0,2	0,2	0,0	0,0	13	0,3
Ago.	15,2	1,4	0,2	0,2	0,6	1,4	52	1,3
Set.	58,2	5,3	3,1	2,2	1,7	4,1	115	2,8
Out.	66,8	6,1	4,1	2,9	4,0	9,5	282	6,9
Nov.	98,3	9,0	8,8	6,3	6,6	15,7	432	10,5
Dez.	154,1	14,1	21,7	15,4	3,2	7,6	433	10,5
Total	1.093,6	100,0	140,9	100,0	42,1	100,0	4.118	100,0

Precipitação				KE>25			
(mm)	(%)	R_{C} (mm)	(%)	(*)	(%)	EI ₃₀ (**)	(%)
259,8	17,2	44,8	23,9	12,7	14,4	1.038	14,9
207,9	13,8	28,7	15,3	14,9	16,8	1.006	14,4
265,0	17,6	46,6	24,8	17,8	20,1	1.344	19,3
100,3	6,7	6,7	3,6	10,4	11,7	781	11,2
47,8	3,2	1,5	0,8	0,6	0,7	79	1,1
15,7	1,0	0,2	0,1	0,2	0,3	24	0,3
21,3	1,4	0,3	0,2	1,2	1,3	95	1,4
10,4	0,7	0,1	0,0	0,4	0,4	19	0,3
112,6	7,5	8,4	4,5	3,8	4,3	375	5,4
128,3	8,5	10,9	5,8	7,5	8,5	712	10,2
133,7	8,9	11,9	6,3	5,5	6,2	462	6,6
203,8	13,5	27,6	14,7	13,5	15,2	1.034	14,8
1.506,4	100,0	187,6	100,0	88,6	100,0	6.971	100,0
	Precipitação (mm) 259,8 207,9 265,0 100,3 47,8 15,7 21,3 10,4 112,6 128,3 133,7 203,8 1.506,4	Precipitação (mm) (%) 259,8 17,2 207,9 13,8 265,0 17,6 100,3 6,7 47,8 3,2 15,7 1,0 21,3 1,4 10,4 0,7 112,6 7,5 128,3 8,5 133,7 8,9 203,8 13,5	$\begin{tabular}{ c c c c c c c } \hline Precipitação & $$(mm)$ & (%)$ & R_C (mm)$ \\ \hline 259,8 & 17,2 & 44,8 \\ $207,9 & 13,8 & $28,7$ \\ $265,0 & 17,6 & $46,6$ \\ $100,3 & 6,7 & $6,7$ \\ $47,8 & 3,2 & $1,5$ \\ $15,7 & 1,0 & $0,2$ \\ $21,3 & 1,4 & $0,3$ \\ $10,4 & $0,7 & $0,1$ \\ $112,6 & $7,5 & $8,4$ \\ $128,3 & $8,5 & $10,9$ \\ $133,7 & $8,9 & $11,9$ \\ $203,8 & 13,5 & $27,6$ \\ \hline \hline $1.506,4 & $100,0 & $187,6$ \\ \hline \end{tabular}$	Precipitação (mm) $(\%)$ $R_C (mm)$ $(\%)$ 259,817,244,823,9207,913,828,715,3265,017,646,624,8100,36,76,73,647,83,21,50,815,71,00,20,121,31,40,30,210,40,70,10,0112,67,58,44,5128,38,510,95,8133,78,911,96,3203,813,527,614,7	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

Quadro 2B - Distribuição percentual mensal de precipitação, dos índices de erosividade e do coeficiente de chuva - Estação Santa Isabel do Rio Preto

	Precipitação				KE>25			
Mês	(mm)	(%)	$R_{C}(mm)$	(%)	(*)	(%)	EI ₃₀ (**)	(%)
Jan.	197,3	10,0	19,8	9,5	15,3	16,8	1.480	14,6
Fev.	286,2	14,5	41,6	20,0	23,1	25,4	2.272	22,4
Mar.	338,4	17,2	58,2	28,0	23,2	25,6	2.442	24,1
Abr.	154,0	7,8	12,1	5,8	11,7	12,9	1.182	11,7
Maio	87,9	4,5	3,9	1,9	1,4	1,6	321	3,2
Jun.	89,4	4,5	4,1	2,0	1,2	1,3	196	1,9
Jul.	67,4	3,4	2,3	1,1	0,5	0,6	70	0,7
Ago.	39,1	2,0	0,8	0,4	0,7	0,7	74	0,7
Set.	166,0	8,4	14,0	6,7	0,7	0,8	240	2,4
Out.	174,8	8,9	15,5	7,5	1,7	1,9	347	3,4
Nov.	215,9	11,0	23,7	11,4	3,9	4,3	903	8,9
Dez.	151,7	7,7	11,7	5,6	7,3	8,0	613	6,0
Total	1.968,0	100,0	207,6	100,0	90,9	100,0	10.140	100,0

Quadro 3B - Distribuição percentual mensal de precipitação, dos índices de erosividade e do coeficiente de chuva - Estação Vila Mambucaba

Precipitação				KE>25			
(mm)	(%)	$R_{C}(mm)$	(%)	(*)	(%)	EI ₃₀ (**)	(%)
129,0	12,7	16,4	11,6	12,61	17,4	946	16,7
204,3	20,2	41,2	29,2	10,02	13,8	925	16,4
106,4	10,5	11,2	7,9	12,30	17,0	930	16,4
52,4	5,2	2,7	1,9	3,37	4,7	242	4,3
38,1	3,8	1,4	1,0	1,34	1,9	77	1,4
25,4	2,5	0,6	0,5	0,54	0,7	26	0,5
21,6	2,1	0,5	0,3	0,11	0,1	11	0,2
16,7	1,6	0,3	0,2	1,47	2,0	110	1,9
56,8	5,6	3,2	2,3	2,73	3,8	192	3,4
42,9	4,2	1,8	1,3	4,03	5,6	323	5,7
83,4	8,2	6,9	4,9	7,06	9,7	586	10,4
236,2	23,3	55,1	39,0	16,88	23,3	1.284	22,7
1.013,0	100,0	141,2	100,0	72,5	100,0	5.653	100,0
	Precipitação (mm) 129,0 204,3 106,4 52,4 38,1 25,4 21,6 16,7 56,8 42,9 83,4 236,2 1.013,0	Precipitação (mm) (%) 129,0 12,7 204,3 20,2 106,4 10,5 52,4 5,2 38,1 3,8 25,4 2,5 21,6 2,1 16,7 1,6 56,8 5,6 42,9 4,2 83,4 8,2 236,2 23,3	Precipitação(mm)(%) $R_{\rm C}$ (mm)129,012,716,4204,320,241,2106,410,511,252,45,22,738,13,81,425,42,50,621,62,10,516,71,60,356,85,63,242,94,21,883,48,26,9236,223,355,1	Precipitação(mm)(%) $R_{\rm C}$ (mm)(%)129,012,716,411,6204,320,241,229,2106,410,511,27,952,45,22,71,938,13,81,41,025,42,50,60,521,62,10,50,316,71,60,30,256,85,63,22,342,94,21,81,383,48,26,94,9236,223,355,139,0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PrecipitaçãoKE>25 (mm) $(\%)$ $R_{C} (mm)$ $(\%)$ $(*)$ $(\%)$ 129,012,716,411,612,6117,4204,320,241,229,210,0213,8106,410,511,27,912,3017,052,45,22,71,93,374,738,13,81,41,01,341,925,42,50,60,50,540,721,62,10,50,30,110,116,71,60,30,21,472,056,85,63,22,32,733,842,94,21,81,34,035,683,48,26,94,97,069,7236,223,355,139,016,8823,31.013,0100,0141,2100,072,5100,0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Quadro 4B - Distribuição percentual mensal de precipitação, dos índices de erosividade e do coeficiente de chuva - Estação Ilha dos Pombos

	Precipitação				KE>25(*			
Mês	(mm)	(%)	$R_{C}(mm)$	(%))	(%)	EI ₃₀ (**)	(%)
Jan.	243,3	16,4	39,8	22,3	13,8	22,2	1.036	20,8
Fev.	203,2	13,7	27,8	15,6	10,2	16,3	822	16,5
Mar.	195,7	13,2	25,8	14,4	9,3	14,9	732	14,7
Abr.	88,6	6,0	5,3	3,0	4,6	7,4	351	7,0
Maio	47,3	3,2	1,5	0,8	0,6	1,0	47	0,9
Jun.	28,4	1,9	0,5	0,3	0,8	1,2	58	1,2
Jul.	26,7	1,8	0,5	0,3	0,4	0,7	34	0,7
Ago.	29,9	2,0	0,6	0,3	0,2	0,2	30	0,6
Set.	80,5	5,4	4,4	2,4	0,3	0,5	62	1,2
Out.	108,6	7,3	7,9	4,4	3,8	6,0	305	6,1
Nov.	188,6	12,7	23,9	13,4	6,0	9,7	508	10,2
Dez.	245,6	16,5	40,6	22,7	12,3	19,8	999	20,0
Total	1.486,2	100,0	178,6	100,0	62,3	100,0	4.985	100,0
$* = MI ha^{-1} ano^{-1}$								

Quadro 5B - Distribuição percentual mensal de precipitação, dos índices de erosividade e do coeficiente de chuva - Estação Santa Cecília

	Precipitação				KE>25(*			
Mês	(mm)	(%)	R_{C} (mm)	(%))	(%)	EI ₃₀ (**)	(%)
Jan.	260,6	18,0	46,8	27,7	13,8	22,2	1.036	20,8
Fev.	130,5	9,0	11,7	6,9	10,2	16,3	822	16,5
Mar.	177,9	12,3	21,8	12,9	9,3	14,9	732	14,7
Abr.	108,9	7,5	8,2	4,8	4,6	7,4	351	7,0
Maio	37,4	2,6	1,0	0,6	0,6	1,0	47	0,9
Jun.	41,9	2,9	1,2	0,7	0,8	1,2	58	1,2
Jul.	32,3	2,2	0,7	0,4	0,4	0,7	34	0,7
Ago.	47,2	3,3	1,5	0,9	0,2	0,2	30	0,6
Set.	69,3	4,8	3,3	2,0	0,3	0,5	62	1,2
Out.	124,1	8,6	10,6	6,3	3,8	6,0	305	6,1
Nov.	179,5	12,4	22,2	13,1	6,0	9,7	508	10,2
Dez.	241,4	16,6	40,2	23,7	12,3	19,8	999	20,0
Total	1.450,7	100,0	169,2	100,0	62,3	100,0	4.985	100,0

Quadro 6B – Distribuição percentual mensal de precipitação, dos índices de erosividade e do coeficiente de chuva – Estação Lajes

	Precipitação				KE>25			
Mês	(mm)	(%)	$R_{C}(mm)$	(%)	(*)	(%)	EI ₃₀ (**)	(%)
Jan.	296,2	20,2	59,7	30,2	31,1	26,9	2.281	25,3
Fev.	232,4	15,8	36,7	18,6	23,8	20,5	1.667	18,5
Mar.	196,3	13,4	26,2	13,3	15,5	13,4	1.253	13,9
Abr.	99,9	6,8	6,8	3,4	4,9	4,2	428	4,7
Maio	55,5	3,8	2,1	1,1	1,3	1,1	114	1,3
Jun.	35,9	2,4	0,9	0,4	1,6	1,4	82	0,9
Jul.	18,1	1,2	0,2	0,1	0,1	0,1	18	0,2
Ago.	19,6	1,3	0,3	0,1	0,1	0,1	23	0,3
Set.	58,3	4,0	2,3	1,2	1,9	1,6	153	1,7
Out.	74,4	5,1	3,8	1,9	3,6	3,2	266	2,9
Nov.	111,0	7,6	8,4	4,2	8,6	7,4	744	8,2
Dez.	271,7	18,5	50,3	25,4	23,3	20,1	2.000	22,2
Total	1.469,3	100,0	197,6	100,0	115,8	100,0	9.031	100,0

Quadro 7B – Distribuição percentual mensal de precipitação, dos índices de erosividade e do coeficiente de chuva – Estação Tocos

	Precipitação				KE>25			
Mês	(mm)	(%)	$R_{C}(mm)$	(%)	(*)	(%)	EI ₃₀ (**)	(%)
Jan.	163,4	11,8	19,2	14,0	9,0	14,4	796	15,0
Fev.	157,9	11,4	18,0	13,1	14,5	23,3	1.076	20,3
Mar.	185,6	13,4	24,8	18,1	10,0	16,0	773	14,6
Abr.	140,2	10,1	14,2	10,3	7,0	11,3	585	11,1
Maio	93,8	6,8	6,3	4,6	2,7	4,3	285	5,4
Jun.	63,1	4,5	2,9	2,1	1,0	1,5	95	1,8
Jul.	50,8	3,7	1,9	1,4	1,4	2,3	129	2,4
Ago.	45,0	3,2	1,5	1,1	0,2	0,3	35	0,7
Set.	77,5	5,6	4,3	3,2	0,3	0,4	90	1,7
Out.	91,2	6,6	6,0	4,4	1,8	2,9	167	3,2
Nov.	125,1	9,0	11,3	8,2	5,2	8,3	479	9,1
Dez.	193,8	14,0	27,1	19,7	9,3	15,0	778	14,7
Total	1.387,3	100,0	137,4	100,0	62,2	100,0	5.289	100,0

Quadro 8B - Distribuição percentual mensal de precipitação, dos índices de erosividade e do coeficiente de chuva - Estação Tanguá

<u>(*)</u> 23.0	(%)	EI20 (**)	(0/)
23.0			(%)
)	19,3	1.875	18,3
24,9	20,9	2.076	20,3
19,2	16,1	1.493	14,6
7,6	6,4	697	6,8
3,4	2,8	340	3,3
1,7	1,4	157	1,5
0,8	0,7	109	1,1
0,7	0,6	75	0,7
1,4	1,2	179	1,7
2,2	1,8	250	2,4
10,6	8,9	936	9,1
23,7	19,9	2.049	20,0
1193	100.0	10 225	100.0
	0,8 0,7 1,4 2,2 10,6 23,7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Quadro 9B - Distribuição percentual mensal de precipitação, dos índices de erosividade e do coeficiente de chuva - Estação Escola União

	Precipitação				KE>25			
Mês	(mm)	(%)	R_{C} (mm)	(%)	(*)	(%)	EI ₃₀ (**)	(%)
Jan.	257,4	13,4	34,6	17,5	12,7	13,5	1.032	13,0
Fev.	213,0	11,1	23,7	12,0	18,0	19,1	1.337	16,8
Mar.	204,9	10,7	21,9	11,1	13,1	13,9	941	11,8
Abr.	185,6	9,7	18,0	9,1	11,1	11,8	925	11,6
Maio	94,2	4,9	4,6	2,3	1,8	1,9	183	2,3
Jun.	69,3	3,6	2,5	1,3	0,8	0,8	88	1,1
Jul.	67,7	3,5	2,4	1,2	0,9	0,9	91	1,1
Ago.	63,2	3,3	2,1	1,1	0,2	0,2	65	0,8
Set.	117,4	6,1	7,2	3,6	0,7	0,8	169	2,1
Out.	124,4	6,5	8,1	4,1	4,6	4,9	391	4,9
Nov.	211,4	11,0	23,3	11,8	8,7	9,3	864	10,9
Dez.	306,3	16,0	49,0	24,8	21,5	22,8	1.875	23,5
Total	1.914,9	100,0	197,4	100,0	94,2	100,0	7.961	100,0

Quadro 10B - Distribuição percentual mensal de precipitação, dos índices de erosividade e do coeficiente de chuva - Estação Cachoeiras de Macacu

	Precipitação				KE>25			
Mês	(mm)	(%)	R_{C} (mm)	(%)	(*)	(%)	EI ₃₀ (**)	(%)
Jan.	393,1	13,1	51,4	17,0	24,7	14,4	2.217	14,0
Fev.	311,6	10,4	32,3	10,7	32,0	18,6	2.814	17,8
Mar.	330,3	11,0	36,3	12,0	36,7	21,3	3.047	19,3
Abr.	268,4	8,9	24,0	7,9	12,7	7,4	1.285	8,1
Maio	131,3	4,4	5,7	1,9	4,0	2,4	406	2,6
Jun.	89,2	3,0	2,6	0,9	2,5	1,5	328	2,1
Jul.	99,9	3,3	3,3	1,1	1,4	0,8	211	1,3
Ago.	114,2	3,8	4,3	1,4	0,7	0,4	122	0,8
Set.	257,6	8,6	22,1	7,3	1,3	0,8	377	2,4
Out.	235,3	7,8	18,4	6,1	4,9	2,8	607	3,8
Nov.	325,7	10,8	35,3	11,6	17,9	10,4	1.677	10,6
Dez.	449,5	15,0	67,2	22,2	33,0	19,2	2.714	17,2
Total	3.006,0	100,0	303,0	100,0	171,8	100,0	15.806	100,0

Quadro 11B - Distribuição percentual mensal de precipitação, dos índices de erosividade e do coeficiente de chuva - Estação Posto Garrafão

	Precipitação				KE>25			
Mês	(mm)	(%)	$R_{C}(mm)$	(%)	(*)	(%)	EI ₃₀ (**)	(%)
Jan.	120,7	9,6	11,6	10,4	4,6	7,4	372	6,8
Fev.	109,0	8,7	9,5	8,5	9,5	15,4	623	11,4
Mar.	131,3	10,5	13,8	12,3	9,4	15,3	794	14,6
Abr.	131,7	10,5	13,8	12,3	10,1	16,4	1.039	19,1
Maio	89,4	7,1	6,4	5,7	3,6	5,8	324	5,9
Jun.	85,9	6,9	5,9	5,3	5,4	8,8	450	8,3
Jul.	73,3	5,9	4,3	3,8	2,4	3,9	246	4,5
Ago.	48,2	3,9	1,9	1,7	0,3	0,4	48	0,9
Set.	98,8	7,9	7,8	7,0	0,4	0,6	123	2,3
Out.	86,9	6,9	6,0	5,4	1,9	3,1	174	3,2
Nov.	120,6	9,6	11,6	10,3	4,4	7,2	448	8,2
Dez.	156,4	12,5	19,5	17,4	9,7	15,7	807	14,8
Total	1.252,3	100,0	112,1	100,0	61,6	100,0	5.448	100,0

Quadro 12B - Distribuição percentual mensal de precipitação, dos índices de erosividade e do coeficiente de chuva - Estação Rio Mole

	Precipitação				KE>25			
Mês	(mm)	(%)	R_{C} (mm)	(%)	(*)	(%)	EI ₃₀ (**)	(%)
Jan.	150,3	11,7	17,7	15,2	8,2	16,0	582	13,1
Fev.	117,2	9,2	10,7	9,2	7,9	15,4	644	14,5
Mar.	135,7	10,6	14,4	12,4	6,1	11,8	525	11,8
Abr.	135,9	10,6	14,4	12,4	5,5	10,9	555	12,5
Maio	88,4	6,9	6,1	5,2	1,8	3,5	189	4,3
Jun.	77,4	6,0	4,7	4,0	1,8	3,5	249	5,6
Jul.	60,7	4,7	2,9	2,5	0,8	1,5	111	2,5
Ago.	56,0	4,4	2,4	2,1	1,0	2,0	108	2,4
Set.	105,7	8,3	8,7	7,5	0,6	1,2	91	2,1
Out.	95,5	7,5	7,1	6,1	2,5	4,8	250	5,6
Nov.	99,6	7,8	7,7	6,7	4,9	9,7	338	7,6
Dez.	157,6	12,3	19,4	16,7	10,1	19,7	796	17,9
Total	1.280,0	100,0	116,3	100,0	51,1	100,0	4.439	100,0

Quadro 13B - Distribuição percentual mensal de precipitação, dos índices de erosividade e do coeficiente de chuva - Estação Eletrobrás

Precipitação				KE>25			
(mm)	(%)	R_{C} (mm)	(%)	(*)	(%)	EI ₃₀ (**)	(%)
189,2	8,7	16,5	8,9	8,6	10,6	794	8,5
182,0	8,4	15,3	8,2	15,3	18,9	1.496	16,0
201,8	9,3	18,8	10,1	14,4	17,8	1.453	15,6
226,4	10,4	23,6	12,7	12,9	15,9	1.354	14,5
152,4	7,0	10,7	5,8	3,8	4,7	494	5,3
143,4	6,6	9,5	5,1	4,0	4,9	563	6,0
163,1	7,5	12,2	6,6	2,3	2,9	475	5,1
136,2	6,3	8,6	4,6	1,9	2,4	319	3,4
177,5	8,2	14,5	7,8	0,2	0,2	293	3,1
182,8	8,4	15,4	8,3	3,7	4,6	488	5,2
185,6	8,6	15,9	8,6	5,5	6,7	688	7,4
229,9	10,6	24,4	13,1	8,4	10,3	913	9,8
2.170,3	100,0	185,3	100,0	81,0	100,0	9.331	100,0
	Precipitação (mm) 189,2 182,0 201,8 226,4 152,4 143,4 163,1 136,2 177,5 182,8 185,6 229,9 2.170,3	Precipitação (mm) (%) 189,2 8,7 182,0 8,4 201,8 9,3 226,4 10,4 152,4 7,0 143,4 6,6 163,1 7,5 136,2 6,3 177,5 8,2 182,8 8,4 185,6 8,6 229,9 10,6	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Precipitação(mm)(%) $R_{\rm C}$ (mm)(%)189,28,716,58,9182,08,415,38,2201,89,318,810,1226,410,423,612,7152,47,010,75,8143,46,69,55,1163,17,512,26,6136,26,38,64,6177,58,214,57,8182,88,415,48,3185,68,615,98,6229,910,624,413,1	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

Quadro 14B - Distribuição percentual mensal de precipitação, dos índices de erosividade e do coeficiente de chuva - Estação Capela Mayrink